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2. Summary Year 3

Historical Background. Petroleum systems models of rifted continental margins are widely used
by industry to predict the general pressure and temperature conditions suitable for hydrocarbon
generation and storage within sediment layers during their geological formation. These
calculations depend on numerous assumptions concerning the thermal properties of the sediment
and basement layers and the model boundary conditions (e.g. input of heat over time from the
crust). Significant variations of temperature over time can additionally be caused by mobile salt
layers due to its high thermal conductivity. The models require the interpretation of seismic data
to define the various sediment layers as a function of distance and depth across the margin. The
seismic data are also analyzed to determine the physical properties of layers that are likely
targets of petroleum accumulation. Testing of the model predictions normally requires
observations from deep boreholes which is very expensive or impractical for ultra deep water
targets on the continental slope. The purpose of this project is to reexamine such models and
explore alternative methods for verifying their predictions.

General Objectives. The approach of this project is to produce new petroleum systems and high
resolution seismic velocity models along several transects across the central and NE sectors of
the Scotian slope. Ground-truth from existing wells on the upper slope will be used as
benchmarks. New marine heat flow observations and better definition of deeper structures on
recent seismic depth sections will place important new constraints on the model parameters.
Each transect uses recent high quality pre-stack migrated seismic profiles, which have greatly
improved the definition of the salt and sub-salt structures relative to earlier profiles. An
important goal is that all data and models will be published and thus available for any future
industry initiatives.

Summary of Results. (a) Measurements of present-day sea-floor heat flow have been taken on
three transects across the Scotian margin. Values reduce slightly from approximately 43 mW/m*
in the ultra deep-water basin to 38 mW/m” on the upper slope. These values are approximately
10-15 mW/m? lower than predicted by earlier models. Values in the offshore region are uniform
along the margin. These observations agree with standard pure-shear rifting models. (b) Large
positive anomalies in heat flow are observed over salt structures, both diapiric and tabular, with
values up to 73 mW/m?. In general, the observations agree with predictions of higher heat flow
in the models due to the high conductivity associated with salt. However, structures in general
have higher observed than predicted values and some structures indicated significant second-
order fluctuations on the edges of the diapiric structure. (C) Revised 2D petroleum systems
models indicate that all conceptual reservoirs may contain more oil than previously estimated,
especially those within the late Jurassic and early Cretaceous. Preliminary 3D models give
similar results, indicating that 2D models are sufficient to define the primary petroleum
maturation potential of the margin. (d) Travel-time and waveform tomography have been
implemented for the 9-km-offset pre-stack seismic reflection data across the Torbrook well site.
Results indicate that refraction tomography significantly improves the long-wavelength velocity
model of sediment structures down to a depth of approximately 2.5 km. The velocity images
show higher-frequency variations that define complex laterally-varying velocity contrasts for the
major reflection boundaries. Deeper structures require a combined analysis of both MCS and
OBS datasets.
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3. Objectives of Project:

The work is focused on constraining thermal and petroleum systems models for two deep to
ultra-deep water regions of the Nova Scotia slope. The results will lead to a better understanding
of the nature of basement and salt structures and their effect on petroleum maturation, and will
provide groundwork for seismic characterization of sedimentary physical properties for
improved definition of petroleum reservoirs. In particular:

e New heat flow observations and petroleum systems models will be undertaken on 4-6
seismic profiles to study regions surrounding salt structure and a recently-imaged zone of
early rifting sediments. The researchers will contrast results from two sub-regions of the
margin: one with expected lower heat flow and autochthonous salt structures (diapirs),
and the other with expected higher heat flow that is dominated by allochthonous salt
structures (salt canopies).

e Analysis of seismic reflection data, recently collected by GXT using a 9-km-long, 360
channel streamer, together with new multi-component ocean bottom seismometer data.
The researchers will use advanced travel-time and waveform modeling techniques for
enhanced imaging and resolution of physical properties that are important for assessment
of potential reservoirs. They will contract structures at two well sites: Torbrook C-15
well (without reservoir) and the Annapolis G-24 well (with reservoir)

4. Description of Progress

(A) Results of heat flow survey (see Appendix A).

* Processing of the heat flow data taken in 2008 has been finalized by Eric Negulic as part
of his MSc thesis. His thesis will be defended in October 2010. Presentations of his work
were made at the GeoCanada 2010 Conference and at the Nova Scotia Energy Research
& Development Forum in May 2010 where he was awarded a prize for best geoscience
and engineering student award.

» Heat flow values reduce slightly from approximately 43 mW/m? in the ultra deep-water
basin to 38 mW/m” on the upper slope. These values are approximately 10-15 mW/m*
lower than predicted by our previous petroleum systems models. Values in the offshore
region are uniform along the margin.

= Large positive anomalies in heat flow are observed over salt structures, both diapiric and
tabular, with values up to 73 mW/m® In general, the observations agree with predictions
of higher heat flow in the models due to the high conductivity associated with salt.
However, most structures have higher than predicted values and one prominent structure
on Profile 88-1A indicated significant second-order fluctuations on the edges of the
diapiric structure.

= A request to NSERC for additional ship time on CCGS HUDSON in 2009 to complete
the heat flow survey and take new refraction profiles was submitted in September 2009.
The proposal was successful. However, subsequent application to DFO for ship time on
the CCGS HUDSON was not granted. We have since been able to find a private vessel to
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do the refraction profiles but this vessel does not have necessary heavy winch and wire
capability to do the heat flow measurements.

(B) Revised Petroleum Systems Models (see Appendix B)

Revised 2-D petroleum systems models were conducted at IES (Achen, Germany)
between May and December 2009. A specific goal was to determine if lower basal heat
flow in agreement with our surface measurements will reduce the maturation level and
over pressures of the potential lower Jurassic source rocks, thereby enhancing their future
resource potential. Preliminary to this work, seismic stratigraphic horizons were revised
for profiles GXT Line 1400 and Lithoprobe Line 88-1A. and new horizons were picked
for GXT Line 1600. The horizons included revised salt horizons based on salt tectonic
studies of C. MacDonald and C. Campbell as part of their M.Sc. theses.

Results of the new models yield reservoirs that contain more oil than previously
estimated, especially for sedimentary units within the late Jurassic and early Cretaceous.
The comparative mass balance of hydrocarbons illustrate that: (a) the seismic line 88-1a
has the highest amount of hydrocarbons generated and expelled from four deeper source
rocks, and accumulated in the Upper Jurassic and Triassic reservoirs; (b) the seismic line
88-1a accumulated at least five times more hydrocarbons in various reservoirs compared
to lines NOVASPAN 1400 and NOVASPAN 1600; and (c¢) the main HC accumulations
in lines 88-1a and NOVASPAN 1600 (in lower saturations) are concentrated in the late
Triassic, late Jurassic, and early Cretaceous reservoirs while the main accumulation is
restricted to the late Jurassic reservoir in the line NOVASPAN 1400.

A final 3-D petroleum systems model will be made by Eric Negulic for the region of the
central slope along the Lithoprobe 88-1A seismic line as a final part of his thesis. In
preparation for this work, existing TGS profiles in the region were digitized from paper
records of data that became available through the CNSOPB. We had requested digital
data from TGS but this request was denied. A primary objective of this final study will be
to use basement temperature models determined from extensional models consistent with
the heat flow data, and to model the temperature (and heat flow) anomalies related to the
salt structures.

(C) Processing and analysis of pre-stack seismic reflection data along GXT Lines 5100 and 1400
across Torbrook C15 well site (see Appendix C and D).

Programs for modeling of travel-time tomography and full waveform tomography have
been implemented. Program modification was required for the MCS geometry to allow
the travel-time tomography code to work when direct waves occur as first arrivals.
Analyses were performed on GXT NovaSpan Lines 5100 and 1400 across the Torbrook
C-15 well site using the long-offset pre-stack seismic reflection data. Results indicate that
refraction tomography improves the long-wavelength velocity model of sediment
structures down to a depth of approximately 2.5 km. The velocity images show higher-
frequency variations that define complex laterally-varying velocity contrasts for the
major reflection boundaries. Results have been submitted for publication in Geophysics.
Analysis of refracted arrivals with longer offsets from coincident ocean bottom
seismometer (OBS) data will be required to constrain deeper velocity structures, such as
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those at the Annapolis G-24 well. Preliminary modelling results on OBS data across the
Torbrook well indicate that such data must be densely sampled (including both shots and
receivers) but also include arrivals from very long offsets. The only OBS data that exists
on the Nova Scotia margin which satisfies these criteria were collected recently on the
NovaSPAN profile 2000. We have received the OBS data as part of a Play Fairway
Analysis Plate Tectonic Special Project. We are in process of refining the original data
processing to improve the receiver-shot geometry that our work shows is critical to
successful inversions. We have requested the pre-stack MCS data from ION//GX in order
to conduct inversions using both MCS and OBS data along the profile.

5. Dissemination and Technology Transfer

European Geophysical Union, Annual Meeting, Vienna, Austria, May 2-7, 2010.
-- Delescluse, M., Louden, K.E., and Nedimovi¢, M.R., Waveform Tomography Applied to
Long Streamer MCS Data from the Scotian Slope.

GeoCanada 2010 Conference, Calgary, AB, May 4-8, 2010.
-- Negulic, E., Louden, K.E., Mukhopadhyay, P.K., Wielens, H. and Nedimovi¢, M.R.,
Thermal Modelling of the Central Scotian Slope, Offshore Nova Scotia: The Effects of Salt
on Heat Flow and Implications for Hydrocarbon Maturation

Nova Scotia Energy Research & Development Forum, Halifax, NS, May 26-27, 2010
-- Louden, K., Mosher, D., Pre-Piper, G., and MacMulin, S., Academic Panel on
Geosciences
-- Negulic, E., Louden, K.E., Mukhopadhyay, P.K., Wielens, H., and Nedimovi¢, M.R.,
Thermal models of the central Scotian Slope and the effects of salt on heat flow. (best
geoscience & engineering student award)
-- Delescluse, M., M.R. Nedimovi¢, K.E. Louden, Waveform Tomography Applied To
Long Streamer MCS Data from the Scotian Slope

Central & North Atlantic Conjugate Margins Conference, Lisbon, Portugal, 29 Sept to 1 Oct
2010
-- Negulic, E., Louden, K.E., Wielens, H., Mukhopadhyay, P.K., and Nedimovi¢, M.R.,
Thermal modelling of the central Scotian Slope, offshore Eastern Canada: Seafloor heat
flow data, hydrocarbon maturation potential and the effects of salt on heat flow.
-- Delescluse, M., Nedimovi¢, M.R., and Louden, K.E., Waveform tomography applied to
long streamer MCS data from the Scotian Slope, offshore Eastern Canada.

6. Publications

Delescluse, M., Nedimovic, M., and Louden, K., 2010. 2D Waveform Tomography Applied to
Long Streamer MCS Data from the Scotian Slope, Geophysics, submitted 12-Jul-2010.
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Negulic, E., Louden, K.E., Mukhopadhyay, P.K., Wielens, H. and Nedimovi¢, M.R., 2010.
Thermal Modelling of the Central Scotian Slope, Offshore Nova Scotia: The Effects of Salt on
Heat Flow and Implications for Hydrocarbon Maturation, GeoCanada 2010 Meeting, May 4-8,
extended abstract.

7. Additional Funding Secured

Pengrowth Petroleum Innovation Grant to Eric Negulic for 2-yr MSc fellowship (2008-9 and
2009-10) to continue research on Petroleum Systems Models of the Nova Scotia Slope
.............................................................................................. $15,000

NSERC Ship time for heat flow measurements in 2010 (10 days on CCGS HUDSON)
.............................................................................................. $212,475
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" Partial support from Pengrowth Petroleum Innovation Grant

* see Appendix C ## see Appendix A

10. Final Steps

We request that the termination date of the research grant be extended for an additional year.
This extension will allow us to use remaining project funds for the following activities:

= 3-D petroleum systems models for the central margin using the heat flow data as constraints
on the basement thermal flux will be finalized in September 2010 by Eric Negulic as a last
part of his MSc thesis.

= Results of our work will be presented at the Central & North Atlantic Conjugate Margins
Conference in Lisbon (29 Sept to 1 Oct 2010). Eric Negulic will present a talk on the thermal
modeling and Matthias Delescluse and Mladen Nedimovic will present a poster on the
waveform tomography.

= A paper on the heat flow acquisition and processing will be prepared for submission in Oct-
Nov 2010.

=  We will begin analysis of further seismic data based on results from the seismic inversion
techniques and the availability of additional MCS and/or new OBS seismic datasets. New
OBS data along MCS NovaSPAN Profile 2000 have been received and are being reprocessed
as part of a Play Fairway Analysis Plate Tectonic Special Project. A proposal to ION/GX for
access to the pre-stack MCS data along the same profile has been submitted (see Appendix
D). It is expected that this work will be completed in a follow-up year (2010-2011), using
remaining funds for the PDF.
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Final Report Year 3 OETR Project Appendix A

Excerpt from Eric Negulic’s MSc Thesis,

Department of Earth Sciences, Dalhousie University

Chapter 3: Nova Scotia Margin Heat flow data and simple crustal models
3.1 Introductory Remarks

The focus of this chapter is on the heat flow through the central Scotian Slope.
Heat flow is measured in ocean basins using shallow penetrating seafloor heat flow
probes. The methodology of seafloor heat flow data acquisition and processing has been
discussed in detail by others (e.g. Lister 1979, Hyndman et al. 1979, Villinger and Davis
1979). The general acquisition and processing methodology is presented in Appendix B.
In this chapter we introduce the 2008 Hudson heat flow cruise across the central Scotian
Slope and present the 47 new seafloor heat flow measurements acquired on the cruise, as
well as four unpublished measurements acquired in 2004. We will discuss corrections to
the data associated with bottom water temperature (BWT) variations, the effects of
sedimentation and high thermal conductivity salt bodies on heat flow. This will allow us
to better constrain the basal heat flux of the study area. Corrected seafloor heat flow data
will then be compared with predictions from simple crustal rift models to constrain
simple lithospheric models across the central Scotian Slope.

The rate of heat loss across the Earth's surface is not laterally uniform. Large
variations in crustal heat flow occur between continental and oceanic crust as a result of
variations in crustal composition and thickness. In summarizing the global heat flow
dataset, Pollack et al. (1993) proposed that the global mean crustal heat flow is ~87

mWm™, where heat flow through the oceans and continents average ~10lmWm™ and
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~65 mWm™ respectively. As oceanic crust is composed primarily of basalt with low
concentrations of radioactive elements, the major source of oceanic heat is the cooling of
young lithosphere generated at ocean spreading centers upon thinning of the lithosphere
during extension (Lister, 1980). The primary source of heat in the thicker continental
crust is radiogenic heat produced during the radioactive decay of potassium, uranium and
thorium which occur in much greater concentrations in continental than oceanic crust.
3.2 Passive Continental Margin Heat Flow

The specific thermal evolution of rifted passive continental margins results in
unique heat flow histories sensitive to the rift style, geometry and amount of initial
lithospheric thinning prior to continental breakup. Numerous simple 2D numerical
thermal models such as the pure shear model (McKenzie 1978), the dual stretching model
(Royden and Keen 1980) and the simple shear model (Wernicke 1981, Wernicke 1985)
have been proposed to predict the basement heat flux and subsidence histories across
rifted continental margins following the onset of rifting. Each model predicts different
seafloor heat flux histories based on the amount of initial lithospheric extension
associated with rifting. Brief introductions to these models are included in Appendix F.

The pure shear model assumes instantaneous thinning of the entire lithosphere by
a factor [ at the onset of rifting. This thinning is accompanied by increased crustal heat
flux immediately following rifting, followed by conductive cooling with time returning to
original unstretched values as time approaches infinity (McKenzie 1978). Royden and
Keen (1980) proposed the addition of a second, lower lithospheric layer, to the pure shear
model of McKenzie. This dual stretching pure shear model allows for varying

components of upper (f) and lower (J) lithospheric stretching which will in turn effect
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the subsidence and basal heat flux experienced by the margin. Young margins experience
significantly increased present day basal heat fluxes due to varying amounts of upper
and/or lower lithospheric stretching. However, old margins, such as the Scotian Margin
(~200 Ma), yield similar present day heat flux values independent of variations in 3 and
due to the extensive period of conductive cooling.

These simple crustal rift models have been applied to the margins of the North
Atlantic in attempts to better constrain crustal structure, subsidence histories and heat
flow. These models, when coupled with present day seafloor heat flow measurements and
seismic interpretations, can be used to further constrain lithospheric models and the
margins evolution. Louden et al. (1991, 1997) coupled pure and simple shear rift models
with seafloor heat flow data across the Goban Spur, Galicia Bank and Iberian margins to
better constrain lithospheric models for the region. Seafloor heat flow data corrected for
sedimentation and basement structure were compared with the predicted present day heat
flux values from pure and simple shear rift models with stretching factors constrained by
available seismic reflection and refraction data. This same workflow will be followed
later in this chapter to better constrain lithospheric models across the Scotian Slope, and
to determine the basal heat flux history through time.

3.2.1 Scotian Basin Heat Flow

The Scotian Basin's heat flow is relatively poorly constrained, especially in the
deeper water regions of the Scotian Slope (Fig. 3.1). Seafloor heat flow measurements
from the deepwater Sohm abyssal plain yield values of 53 mWm™ (Louden et al. 1989).
A recent study by Goutorbe et al. (2007) presented an average heat flow of 47 + 07

mWm™ for the Scotian Basin. The study used bottom hole temperatures for gradient
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analysis and a combination of commonly available well logs to determine sediment
thermal conductivity. Data from available Scotian Basin wells were used from which
average heat flow was determined. The study did not take into account the effects of salt
bodies on heat flow, and thus the reported value of 47 + 07 mWm™ may be a slight
overestimate of the present day heat flow as many wells target salt flank and salt crest

traps, thus, experiencing elevated gradients.

294° 296° 298’ 300°

Depth (m)
6000 5000 4000 3000 2000 1000 O

Figure. 3.1: Location map of Scotian basin showing seismic lines of the NovaSPAN survey (blue),
Lithoprobe survey (thick black), SMART refraction lines (green) and TGS-Nopec NS-100 (thin grey).
Scotian Slope well locations are represented with yellow circles and Lewis and Hyndman heat flow station
locations (1976) are shown with green. Background map shows water depth and white represents location
of shallow salt after Shimeld (2004). Measured Sohm abyssal plain heat flow is shown in white after
Louden et al. (1989) and Scotian basin average after Goutorbe et al. (2007) is shown in brown.
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The only published seafloor heat flow measurements from the Scotian Basin to
date are ten measurements reported by Lewis and Hyndman (1976) from two transects
across the Scotian Slope (Fig. 3.1). These measurements record a large variability in
seafloor heat flow from 24-75 mWm™. A mean value of 52 + 5 mWm™ was reported.
The variation in measured heat flow has been attributed to the presence of salt diapiric
structures underlying the Scotian Slope. Large salt diapirs have a focusing effect as they
work as low resistance thermal conduits funneling heat to the seafloor above them, thus
resulting in the observed variations. The effects of salt on heat flow are discussed in
further detail in Section 3.4.3.

3.3 Hudson 2008 Heat Flow Cruise

The 2008 Hudson heat flow cruise was designed to measure seafloor heat flow
across the central Scotian Slope. Seven days of ship time aboard the CCGS Hudson were
allotted for the measurement of heat flow from the central Scotian Slope using the 32
thermistor Dalhousie heat flow probe (Appendix B-3). The goal of the cruise was two-
fold: determine the regional heat flow trends across the central Scotian Slope, including
any along strike or down dip variations in heat flow; and measure the local effects of high
thermal conductivity salt bodies on seafloor heat flow. In total 47 successful heat flow
measurements were acquired from the Torbrook gas hydrates mound and along the traces
of three 2D seismic reflection profiles, NovaSPAN lines 1400 (heat flow transect Line 1)
and 1600 (heat flow transect Line 3) and Lithoprobe line 88-1A (heat flow transect Line
2) (Fig. 3.2). We were unable to obtain measurements from all sites due to limited ship
time and coarse surface sediments preventing penetration of the probe in certain regions.

Of the 47 successful measurements, 7 were located at the Torbrook gas hydrates mound,
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18 were taken along Line 1, 13 were taken along Line2, and 9 were taken along Line 3
(Fig. 3.2). The results of the cruise are summarized in Table 3.1, and further data tables

for each station are included in Appendix C.

300°

298°

F. Elevation (m)
-6000 -4000 -2000 0

Figure 3.2: Location map of the central Scotian Slope showing 2D seismic lines of the NovaSPAN survey
in blue and the Lithoprobe survey in black. Background map shows seafloor topography. Heat flow
transects of the Torbrook mound and Lines 1-3 are shown in white text. 2008 heat flow stations are shown
as red crosses, 2004 stations as orange crosses, and Lewis and Hyndman stations (1976) are shown as green
crosses. Yellow circles represent Scotian Slope well locations and cross sections locations corresponding to
figures 3.4-3.6 are shown by brown letters.

3.3.1 Torbrook Results

Seven new seafloor heat flow measurements were acquired at the Torbrook gas
hydrates mound in 2008 (Fig. 3.3). Two additional heat flow measurements were
acquired from the Torbrook mound on a previous cruise in 2004 and will be compared

with the more recent data recorded on the 2008 cruise in order to determine the precision
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of conductivity values recorded by the probe between different cruises. Recorded
geothermal gradients may vary between cruises if bottom water temperature variations
exist; however, sediment thermal conductivity values should remain constant providing a

good test for the consistency of the probe.
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Station Offset Shot E.S. Depth CTD Depth - No. Temp. Gradient No. of Cond. Thermal Heat Flow Bullard Heat
No,  IN) long. (W) * ¥ {m] __ Point {m} mp PWTCO egints  (mksm)  © Points cond. 7 (mw/m?) % Flow (mw/m?) it
Line 1 {1400 profile)
HF101 42°34 07 B2°17.48 55773147 4713136 40 100700 3177 1700.00 1672.00 3.74 20 20.29 0.86 20 1.191 0.161 2418 43 239 08 15
HF102 42°26.62 62°15.32 S560933.71 470005771 114200 2908 2180.00 2140.00 3.3 25 342 0.55 25 1.065 0.112 36.43 4.41 347 0.6 1.5
HF103 42°21.42 62°13.71 562881.08 4690215.09 124300 2708 246700 2438.00 3.10 23 37.63 0.3 23 1.013 0.104 38.12 4.23 37.3 0.4 1
HF104  42°20.07 E2°13.29 563876.25 468728961 127300 2646 2530.00 2503.00 3.06 23 37.76 0.32 23 1.031 0.053 38.94 2.32 381 0s 1
HF105 42°18.89 62°12.98 563678.13 468612253 128500 2626  2616.00  2585.00 3.03 23 45.36 0.24 23 0999 0.084 45.33 4.04 46.9 0.3 25
HF106 42°17.50 62°12.60 56456541  4683077.27 131700 2563  2685.00  2655.00 2.92 24 39.74 0.43 24 0941 0.088 374 3.9 39.3 o4 0
HF107  42°16.15 B2°12.24 565420.07 468014996 134800 2500 2750.00 2726.00 2.88 23 40.72 0.25 23 0.959 0.087 39.04 377 40.3 0z 1
HF108  42°13.00 62°11.40 566488.09 467415331 140900 2378 2B88.00 2864.00 2.74 24 35.99 0.19 24 0.983 0.091 35.39 3.48 371 0.2 15
HF109  42°10.15 62°10.65 567341.83 4669073.51 146100 2276 3031.00  3009.00 2.61 23 39.32 0.44 23 1.007  0.058 39.61 2.74 39.4 0.3 15
HF110  42°07.45 62°09.93 56811359 466443962 150900 2182 309500  3075.00 2.55 22 45.02 0.46 22 0.945 0.052 42.53 2.79 43.3 04 15
HF111 42°05.61 62°09.38 S69409.65 4661258.96 154300 2114 3191.00 3167.00 2.40 28 64.05 0.24 28 0.966 0.092 61.88 6.11 65.7 05 0
HF112  42°04.19 62°09.03 S70250.24 4658122.33 157600 2050 3301.00 3253.00 2.40 22 51.99 0.33 22 1.047 0.129 54.41 T.04 54.9 0.3 2
HF113  42°02.51 62°08.61 S5ST0317.60 4655408.38 160300 1985  3370.00  3345.00 2.33 26 42.94 0.38 26 0.93 0.12 39.95 5.5 43.1 0.3 1
HF 114 41°58.88 62°07.686 571647 14 4649142 90 166800 1868 3475.00 3459.00 231 24 4371 0.28 24 0.964 0.067 4213 322 434 03 0
HF115 41°55.85 62°06.87 ST2606.96 4643508.66 172600 1753 3520.00 3503.00 2.30 23 52.63 1.05 23 1.028 0.163 54.19 9.64 56.6 0.5 1
HF117 41°51.93 62°05.80 57422149 4636377.85 180000 1606 3778.00 3699.00 225 22 47.09 0.56 22 1.079 0.082 50.82 4.47 51.7 0.7 1
HF11&8  41°47.85 B2°04.74 57583358 482874321 187800 1451 3789.00 3783.00 2.22 28 41.31 0.48 28 1.054 0.087 43.54 4.09 43.3 0.4 35
HF119  41°40.29 B62°02.83 578541.73 461410516 201700 1178 391000  3906.00 2.19 21 44.34 0.64 22 0.987 0.108 43.75 5.4 46 0.7 05
Line 2 (88-1a profile)
HF201 42°49.75 B1°28.48 B24265.79 474390145 34300 2492 1482.00 1466.00 3.82 18 22.55 1.56 19 1.243 0.145 28.02 5.2 291 14 2
HF202 42°46.25 61°24.59 B29556.52 4736882.50 43100 2602 1890.00 1871.00 3.43 16 30.49 1.88 17 1.187 0.132 36.2 6.25 3.7 1.7 2
HF203 42°42.55 61°20.22 ©36002.1336 4728696.165 53500 2731 2341 2359 36 20 41.48 1.2 20 1.027 0432 42.61 6.72 43.9 07 1
HF204  42°37.68 61716.32 B641390.7036 4721797.612 62200 2841 2671 2652 2.85 13 5377 228 13 0.991 0.243 53.27 15.34 54.7 0.5
HF205 42°35.84 61°14.42 B43952.2479 4718624.638 66300 2893 2763 2741 2.79 21 582 0.61 22 1.114 0.097 62.59 6.13 65.5 08 1
HF206 4273440 61713.00 5454491237 471544252 70000 1605 2920 2899 2.76 22 59.76 1.08 22 0.997 0.113 59.61 T7.85 61.3 11 0
HF207  42°3332 61°11.91 B4T061.2141 471337841  T2600 2970 3010 2995 2.7 22 B7.76 0.38 22 1.055 0.074 T1.49 5.38 728 04 1
HF208 42°32.13 B1710.75 648830.8865 4710885.725 75600 3007 3170 3157 259 21 57.08 111 21 1.041 0.145 59.41 944 60.7 1 05
HF208  42°30.36 61°09.11 651737.4651 4708062.383 79500 3057 3249 3229 2.49 22 45.78 0.64 22 0.98 o 44.87 0.63 MA MA 1
HF210 42°27.51 61°06.22 655833.0709 4702850.292 86000 3139 3535 3501 233 16 45.14 0.8 16 0.922 0.158 41.62 T.89 471 1 4
HF218 41°58.54 B0°37.64 B95968.9103 465044379 152000 3964 4180 4184 218 23 41.19 0.39 23 1.072 0.093 4415 427 42 6 04 25
HF220 41°53.29 60°32.54 7T03388.3668 4640612.751 164500 4120 4337 4344 2.18 22 43.29 0.42 22 1.032  0.054 44,98 278 44.5 0.5 0.5
HF221 41°47.24 60°26.66 T11751.4859 462958537 178200 4292 4464 4470 22 20 40.81 0.76 20 0.986 0.154 40.25 T.03 411 04 2
Line 3 (1600 profile)
HF309 42°49.85 60°13.60 726101.8034 4746783.642 150400 2406 2915 2893 2.65 21 45.8 0.59 2 1.043 0063 47.76 3.52 47 04 2
HF310  42°45.70 60°12.05 728958.3947 4739021.285 158700 2242 3085 3066 2.49 18 45.38 0.72 19 1.083  0.043 48.22 273 48.3 0.7 05
HF311 42°41.52 60°10.51 730914.9098 4731120.244 166800 2077 3256 3240 231 19 48.82 0.71 19 1.058 0.041 51.66 277 51.4 0s 2
HF312 42°37.46 60°09.03 733626.4161 4723602.946 174800 1919 3539 3530 2.23 15 39.04 0.64 16 1.075 0.053 41.96 277 41.4 04 0
HF313  42°34.77 60°08.05 735106.5278 4719050.445 179500 1824 3650 3640 2.21 19 33.82 0.54 19 1.018 0.038 34.44 1.57 34.4 04 0
HF314  42°32.15 B0°07.08 7366436373 4713450.953 185300 1708 3785 3780 22 1w 42.86 0.66 18 1.04 o 44.57 0.69 A MNA T
HF315 42°30.07 60°06.32 737558.9535 4709570.841 189300 1626 3880 3883 22 13 397 0.63 13 1.086 0.038 43.11 218 431 0s 0
HF316 42°24.60 60°04.31 T740639.5733 4700195.174 199200 1429 4065 4061 221 19 40.66 0.3 20 1.064 0.054 43.26 2.53 431 02 0
HF317 42°18.54 60°02.10 744260.9093 4689008 382 211000 1196 4220 4221 218 21 41.18 0.81 21 1.01 0.072 41.57 3.59 41.4 0.5 0.5
“orbrook Site
HFDO01 42°33.95 B62°27.49 1563 1541 3.7 22 21.78 0.62 22 1.067 0.159 23.24 4.12 206 1.2 3
HFODZ  42°33.80 B2°27.45 1567 1550 3T 25 21.29 0.47 25 1.098 0.118 23.37 299 21.5 0s 2
HFO03  42°33.48 62°27.39 1584 INIA MiA 24 22.25 0.52 24 1.146 0.078 25.49 233 24.9 03 2
HFO04  42°33.54 62°27.84 1590 1572 37 24 19.56 0.59 24 1.192 0.15 23.32 3.64 21.9 0e 3
HFO0DS  42°33.78 B2°27.65 1592 1563 3.69 24 22.02 0.31 24 1.132 0.141 24.92 3.45 23.7 04 2
HFO06  42°33.88 B62°27.56 1564 INAA NiA 25 22.34 0.32 25 1.154 0.118 25.77 2.99 24.2 04 2
HFOO7  42°34.11 62°27.34 1572 1549 3.7 23 22.49 0.46 23 1.093 0101 24.57 277 24.4 04 3
2004 _Data
HYD401 44°34 10 54°51.79 1703 INFA NiA ] 26.7 0.4 10 1.186 0.054 31.6 19 28.9 06 4
HYD402  44733.45 54°52.63 1730 NA MIA 10 26.0 0.5 12 1171 0.070 30.4 2.4 28.2 0.6 6.5
HYDS503 42°34.92 62°25.46 1526 1535 373 24 31.5 0.4 23 1.143 0.114 36.0 4.1 36.8 03 0
HYD504 42°35.30 62°26.44 1545 1544 373 22 ITE 0.3 19 1.146 0,100 43.1 4.2 42.3 o4 1

Table 3.1: Summary table of heat flow data acquired during the July 2008 Hudson heat flow cruise as well as unpublished data from 2004. E.S. = echo sounder.,
BWT = Bottom Water Temperature.
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Figure 3.3: Location map showing seafloor heat flow stations recorded in 2008 (red crosses) and 2004
(blue circles).

For all stations, recorded gradients are roughly linear over the length of the probes
penetration with the exception of some disturbances of thermistors in the uppermost 2 m
resulting in a slight change in gradient (Fig. 3.4). The uppermost 2 m of temperature data
are likely effected by penetration of water from above upon penetration of the probe and
thus are not included in our gradient calculation. Gradient measurements showed little
variation between stations with the exception of a low gradient of 19.6 + 0.6 mKm'
recorded at site HF004. Geothermal gradients varied from 19.6 + 0.6 - 22.5+ 0.5 mKm''
with a mean gradient of 21.7 + 0.5 mKm™'. Thermal conductivity values ranged from 1.07
+0.16—1.19£0.15 Wm 'K, with a mean conductivity of 1.13 +0.12 Wm™'K™'. Heat
flow values for the Torbrook sites ranged from 20.6 + 1.2 - 24.4 + 0.4 mWm™, with a
mean heat flow of 23.0 + 0.6 mWm™ for the Torbrook gas hydrates mound. The

maximum distance between heat flow sites at the Torbrook mound was ~1000 m, and
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with little assumed lateral variation in lithology between sites and consistent measured
conductivity and gradient values we can assume that the probe is functioning well.

SCOTIAN SLOPE 2008 HEAT FLOW STATION 1

Temperature (K) Conductivity (W/m-K) Heat Flux (mw/n?)
-8.05 Q 0.05 0.1 0151 15 2 -100 0 100
1L
2 7 %
]
7]
e F
£3
: i
| i
5! =
=
6L

Figure 3.4: Example plot of 2008 Hudson heat flow station showing temperature, conductivity, and heat
flux vs. depth plots.

We will also take this opportunity to report the results of two unpublished heat
flow measurements acquired from the Torbrook gas hydrates mound in 2004.
Measurements were acquired using the Dalhousie heat flow probe following the same
method as described in Appendix B. The data have not previously been publicly released
and are presented in Table 3.1. Gradients measured for stations HYD503 and HYD504
were 31.5 + 0.4 mKm™ and 37.6 + 0.3 mKm™' respectively, with thermal conductivity
values of 1.14£0.11 Wm 'K and 1.15 = 0.10 Wm'K"". Heat flow values of 36.8 + 0.3
mWm™ and 42.4 + 0.4 mWm™ for stations HYD503 and HYD504 are significantly
higher than those recorded at the Torbrook mound on the 2008 cruise due to the notably

higher gradients. This suggests that in addition to purely conductive vertical heat transfer
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a second mechanism such as convective heat transfer through the upper sediments or
varying bottom water temperatures may have effected the measured gradient. Variations
in BWT's are investigated in Section 3.4.1.

3.3.2 Line 1 Results

Line 1 resulted in the successful acquisition of 18 of the 19 heat flow
measurements planned along the trace of GXT NovaSPAN 2D seismic reflection profile
1400. Station HF116 was skipped to save time. From this line 13 measurements were
taken in regions unaffected by salt structures to determine the regional trends across the
slope, and 5 measurements were taken above salt bodies to quantify the effects of salt on
heat flow (Fig. 3.5).

Measurements in regions unaffected by salt showed a general increase in the
seaward direction. Ignoring the abnormally low value of 23.9 mWm™ at station HF101,
the background heat flow values in the landward regions of the survey range from ~35-40
me’z, while the more seaward stations show values of ~43-46 mWm™. Increased heat
flow above salt bodies is evident in the data. The increase in measured heat flow above
salt varies from one diapir to another. Values above the most landward diapir (D1)
increase by ~8 mWm™ from the surrounding background values of ~39 mWm™ to 46.9
mWm™ above the salt body at heat flow station HF105. The small salt body which
underlies HF107 does not have a significant effect on seafloor heat flow likely because its
increased distance from the seafloor and welded, non-rooted, feeder. Stations HF109 and
HF110 are both located above what is interpreted as a deeply buried salt canopy, and
similar to station HF107 do not record significantly elevated heat flow values, likely as a

result of the depth of salt. Values above the central salt diapir D2 show the

11
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Figure 3.5: Seismic interpretation of NovaSPAN line 1400 from A-A' as shown in Figure 3.3. Colored horizons represent lithological units as shown in Figure

2.7?. Vertical red lines show locations of seafloor heat flow measurements, steep blue lines represent faults and the vertical green line represents the Torbrook C-
15 well. Above the seismic interpretation is a plot of measured seafloor heat flow in red; hollow boxes are likely erroneous and may be disregarded.
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largest increase in heat flow, reaching upwards of 65.7 mWm™ at station HF111, ~23
mWm™ above the surrounding background values of ~43 mWm™. This station is located
directly above the squeezed feeder and is the second shallowest salt body identified on
Line 1400. Station HF112 is located above a shallow salt canopy fed by the attached
diapir underlying HF111, thus, recording a high heat flow value of 54.9 + 0.3 mWm™.
The most seaward salt bodies show increases of ~8-13 mWm™ above the background
values of ~43 mWm?, reaching values of 51.7 + 0.7 mWm™ and 56.6 = 0.5 mWm™ at
stations HF115 and HF117 above diapirs D3 and D4 respectively.

It is noted that the largest increase in measured seafloor heat flow does not
correspond to the tallest, shallowest diapir (D1). However, as neither station HF105 or
HF106 are located directly above the crest of this diapir, they may not have recorded the
maximum associated heat flow. Station HF111, located directly above the crest of the
second tallest and shallowest salt body (D2), records the highest seafloor heat flow value
of heat flow transect Line 1.

3.3.3 Line 2 Results

In total, 13 of the 21 proposed measurements were successfully acquired along
heat flow transect Line 2. Successful stations include HF201-210 and HF219-221 (Fig.
3.6); however, station 209 recorded only a measure of gradient, and thus conductivity
values were averaged from stations HF210 and HF208 yielding a conductivity value of
0.98 Wm™'K™'. This value is a low value for conductivity and reflects the anomalously
low value of 0.92 + 0.16 Wm ™K' recorded at station HF210. Stations HF217 and HF218
were attempted, however problems were encountered in penetrating the seafloor due to

the presence of coarse sediments. Stations HF216-211 were skipped as they appeared to
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Figure 3.6: Seismic interpretation of Lithoprobe line 88-1a from B-B' as shown in Figure 2.1. Colored horizons represent different lithological units. Vertical red
lines show locations of seafloor heat flow measurements, steep blue lines represent faults and the vertical green line represents the Shubenacadie H-100 well.
Above the seismic interpretation is a graph showing plots of measured heat flow values in red; hollow boxes are likely erroneous and may be disregarded.
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be located in a large channel where accumulations of coarser sediments would make
successful penetration of the probe unlikely. Of the 13 measurements acquired across
Line 2, four measurements were taken above a salt structure D5, while the rest were
taken in regions unaffected by salt.

Similar to Line 1, we see a general increase in heat flow in the seaward direction.
In line 2 we record low heat flow values of ~30 mWm™ at the landward limit of the line
increasing to ~43 mWm™ at the seaward limit similar to Line 1. The low heat flow values
at stations HF201 and HF202 are associated with the anomalously low geothermal
gradients of 22.6 = 1.6 mKm™ and 30.5 + 1.2 mKm'' respectively as the corresponding
thermal conductivities of 1.24 + 0.14 Wm 'K and 1.19 + 0.13 Wm™'K ™' are actually
higher then the mean values of 1.05 + 0.13 Wm™'K™' for the line. Salt structure D5 has
been interpreted as a large, thick, salt canopy fed by a broad vertical feeder. The heat
flow spike above D5 is not uniform across the structure. A range of heat flow values from
60.7 + 1.0 - 72.8 £ 0.4 mWm™ are identified above the salt structure. Little variation in
depth to salt in the seismic images coupled with large variations in measured heat flow
above the salt diapir suggests that the variations in heat flow above this diapir are not the
result of purely conductive heat transfer and that there is likely a second mechanism
effecting the measured temperature gradients.
3.3.4 Line 3 Results

Line 3 resulted in the successful acquisition of data from 9 of the 17 planned heat
flow stations (Fig. 3.7). Measurements were made at stations HF317-309. Many stations

required two penetrations as the jog sensor was not triggered on the first attempt, thus no
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Figure 3.6: Seismic interpretation of NovaSPAN line 1600 from C-C' as shown in Figure 2.1. Colored horizons represent different lithological units. Vertical red

lines show locations of seafloor heat flow measurements. Above the seismic interpretation is a graph showing plots of measured heat flow values in red.
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heat pulse was released from the central heater wire (Appendix B-3). This gave us the
opportunity to check gradient values between penetrations. No significant variations in
gradient were recorded between penetrations at the same site (Table 3.2). Little variation
in conductivity with depth occurred for any station in this line. Therefore the results of
the Bullard heat flow calculations were very similar to the uniform conductivity heat flow
calculations (Table 3.1).

Station HF314 had no heat pulse on either attempt, and thus conductivity values
for heat flow analysis at this station were taken from surrounding stations HF316 and
HF313. Time did not permit completion of the Line 3 heat flow survey; however, multi-
beam imaging beneath the more landward portions of this line suggest that the region is
cut by a large submarine canyon and thus penetration of the associated coarser seafloor
sediments may not have been possible even had time permitted (Fig. 3.8). It is
unfortunate we were unable to take measurements from this region as the most landward
diapir (D6) penetrates within ~200 m of the seafloor, and is the shallowest diapir seen in
the available seismic images. Of the nine measurements acquired, one station is located
above a large salt diapir stalk (D7), four are located over a shallow salt canopy, while

only three are located in regions unaffected by salt (Fig. 3.7).

Final Report Year 3 OETR Project Appendix A

First Penetration (No Heat Pulse) Second Penetration (Heat Pulse)
Station No. Temp. Gradient No. Temp. Gradient

No. Points (mK/m) o Points (mK/m) (o]
HF317 22 42.4 0.1 21 41.2 0.6
HF316 19 42.2 0.8 19 40.7 0.3
HF313 19 35.1 0.4 19 33.8 0.5
HF312 21 40.3 0.6 15 39.0 0.6
HF311 20 48.9 0.8 19 48.8 0.7
HF310 20 45.8 0.5 19 454 0.7
HF309 18 45.1 0.9 21 45.8 0.6

Table 3.2: Comparison between gradients recorded for stations which required multiple penetrations.

A-17




Final Report Year 3 OETR Project Appendix A

Figure 3.8: Multi-beam image of seafloor **Get from Keith or Calvin**

Heat Flow measurements recorded seaward of salt ranged from 41.4 £ 0.5 - 43.1
+0.5 mWm™ and were in good agreement with measurements from the seaward limits of
Lines 1 and 2. Heat flow stations HF309-312 were located above a large diapir/canopy.
Stations HF309-311 yielded heat flow values from 47.0 £ 0.4 - 51.4 + 0.5mWm™,
notably higher than those in regions unaffected by salt. Station HF312, located at the
seaward tip of the canopy, recorded a low heat flow value of only 41.4 + 0.4 mWm™.
Station HF314 recorded a final measurement above salt. It was located above a detached
salt canopy. The measured value of 44.6 + 0.7 mWm™ is higher than both the adjacent
values at stations HF313 and HF315 which do not overly salt bodies.

The lack of heat flow measurements from the landward regions of Line 3 is
problematic in our analysis of regional heat flow trends across the central Scotian Slope
as we have no constraints on the landward heat flow for Line 3. According to the trends
measured at Lines 1 and 2 we expect that heat flow values will decrease in the landward
direction, however, further measurements are required to verify these assumptions.
Further landward measurements in regions unaffected by salt would also be useful in
assessing the effects of the salt canopies on heat flow. For now we assume that the higher
heat flow above the canopies is due to the high thermal conductivity of the salt; however,
verifying this requires lower heat flow values be found in the adjacent regions unaffected
by salt diapirism/canopies.

3.4 Heat Flow Data Analysis
In order to analyze our seafloor heat flow data in terms of crustal heat flux we

must account for the effects of sedimentation, salt, and bottom water temperature
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variations on the measured heat flow data. We examine BWT variations using water
column temperature data recorded by a CTD probe contained within the Dalhousie heat
flow probe, the 6 m of sediment temperature data recorded by the heat flow probe, and
temperature gradients determined by Leblanc et al. (2006) from the Torbrook gas
hydrates mound (Section 3.4.1). We correct for the effects of sedimentation on seafloor
heat flow using the equations of Louden and Wright (1989) (Section 3.4.2) and the
effects of salt on heat flow using simple 2D conductivity based numerical models
(Section 3.4.3)
3.4.1 Bottom Water Temperature Variations

To address the possible effects of BWT variations on seafloor heat flow
measurements we have compared bottom water temperatures and water column
temperature gradient profiles recorded at the Torbrook mound from both the 2004 and
2008 cruises. Water column data were recorded with a Conductivity (salinity)-
Temperature-Depth (CTD) probe located within the instrument housing of the Dalhousie
heat flow probe. Further plots of water column temperature gradients are included in
Appendix D. Temperature data recorded through the water column are used to determine
the stability of bottom water gradients and if significant variations exist in BWT between
stations and cruises. If bottom water currents exist they may explain the variations in
measured near surface geothermal gradients noted between 2004 and 2008 as associated
varying BWT can penetrate downward into the near surface sediments. Finally, in
addition to the CTD temperature data we will also investigate heat flow at the Torbrook

gas hydrates mound using a geothermal gradient sourced from measured seafloor
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temperatures and depth to a Bottom Simulating Reflector (BSR) associated with the
methane gas hydrates phase boundary after Leblanc et al. (2007).

The CTD probe was employed to record changes in the structure of the water
column. The temperature trend recorded through the water column is particularly useful
in identifying anomalous temperature variations associated with bottom water currents.
As expected, the general trend recorded by the CTD probe shows increasingly stable

temperatures and smaller variations in temperature with increasing depth (Fig. 3.9).

Temperature ("C)
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Figure 3.9: Temperature vs. Depth plot showing temperatures recorded by the CTD probe as it descended
through the water column.

At shallow depths up to ~700 m water temperatures vary at a daily to seasonal time
period induced by surface temperature variations and shallow penetrating currents.
Smaller temperature variations can persist to depths greater that 700 m and may effect

near surface sediment temperatures. Appendix D contains temperature vs. depth profiles
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for the bottom 600 m of the water column for all heat flow stations with CTD data.
Deeper stations show more stable BWT (Fig. 3.10). Water column temperature gradients
become increasingly stable with increasing water depth. Notable increases in water
column gradient stability occur below ~2000 m. Very little variation in bottom water

temperature gradients occurred at depths greater than ~3300 m (Appendix D).

Temperature (°C) Temperature ("C) Temperature (°C)
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Figure 3.10: Comparison of bottom water temperatures for different heat flow stations along line 1.

As described in Section 3.4.1 and shown in Table 3.1 the mean seafloor heat flow
0f 23.0 £ 0.6 mWm™ from the 2008 Torbrook data were significantly lower than the
mean values of 39.6 + 0.4 mWm™ from the 2004 Torbrook data. The mean gradient of
34.5+ 0.4 mKm™ recorded during the 2004 cruise was much higher than the mean
gradient of 21.7 + 0.5 mKm™ in 2008. However, this relatively high value is still notably
lower than all other gradients (>37 mWm™) recorded across the margin with the
exception of four other measurements made in shallow water regions near the gas
hydrates mound and station HF313 on heat flow transect Line 3. The mean sediment
thermal conductivity values of 1.13 + 0.12 Wm'K™' in 2008 and 1.14 + 0.11 Wm 'K in
2004 were similar. As thermal conductivity values remained essentially constant it is the

change in temperature gradient that was responsible for the significantly lower estimates
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of seafloor heat flow in 2008. In order to determine if these changes in gradient were the
result of variations in BWT penetrating into the upper sediments we have compared the
BWT data from the two cruises.

The CTD data from the 2008 cruise showed greater changes in temperature with
depth than the more stable bottom water column temperatures recorded in 2004 (Fig.
3.11). The mean BWT of 3.70 °C recorded in 2008 is only 0.03 °C lower than the mean
BWT value of 3.73 °C recorded in 2004. The absolute BWT's are similar between the
two cruises; however, non-linearity's observed in the water column temperature gradient
for the few hundred meters of seawater above the seafloor suggests bottom water currents

may exist (Fig. 3.11).
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Figure 3.11: Comparison of BWT data from Torbrook mound in A)2008 and B) 2004.
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The effects of seasonal variations in BWT's penetrating downward into the
seafloor sediments should be greatest at the surface, decreasing towards the undisturbed
sediment temperatures sourced from earth's interior with depth. Therefore, all
temperature vs. depth plots for the 6 m of temperature data recorded by the seafloor heat
flow probe should converge with depth when plotted from the associated BWT recorded
by the CTD probe. Similar geothermal gradients should be experienced at depths beneath
the penetration of environmental perturbations. Environmental perturbations due to
seasonal or annual BWT variations should not penetrate beneath the uppermost few
meters of the sediment column (Louden and Wright 1989). The data recorded by the
seafloor heat flow probe for the uppermost 6 m of the sediment column should be found
to converge with depth between the 2004 and 2008 cruises if the data are affected by
short wavelength seasonal or annual BWT variations. However, this expected
convergence is not observed in our data when comparing the temperature vs. depth plots
from the 2008 and 2004 cruises (Fig. 3.12).

This suggests that the near surface sediment temperature gradient for both
datasets has been effected by deeper penetrating temperature variations extending to
depths greater than 6 m. These may be the result of longer wavelength bottom water
temperature variations operating at a period longer than the four years we recorded, or
possibly an effect of convective fluid flow within the sediments. More data over a longer
sample period are required to determine the true cause of the variations in sediment
temperatures recorded between the two cruises. From our early analysis we are unable to

conclude if BWT are effecting the recorded gradients.

A-23



Final Report Year 3 OETR Project Appendix A

Temperature (°C)

3.65 3.7 3.75 38 3.85 39 3.95
0 o
—+—HYD503
1 ——HF001
—— HYD504
5 —a— HF002 ||
E
£3
o
)
()]
4
5
6

Figure 3.12: Plots of Temperature vs. Depth recorded by the 32 thermistor Dalhousie heat flow probe
showing temperature gradient in the upper 6 m of sediments. Gradient is plotted from the bottom water
temperature recorded by the CTD probe at the seafloor (0 m).

In addition to BWT analysis a second method of seafloor heat flow calculation for
the Torbrook gas hydrate mound has been applied to help us interpret the anomalously
low geothermal gradients recorded at the Torbrook mound during the 2004 and 2008 heat
flow cruises. The method involves calculation of gradient using measured seafloor
temperatures and temperatures associated with the methane gas hydrates phase boundary
(Fig. 3.13). Leblanc et al. (2007) have identified a BSR associated with the methane gas
hydrates phase boundary at a depth of 363 m below seafloor. Using a measured seafloor
temperature of 3.7 °C and the depth to phase boundary under hydrostatic and lithostatic
pressure, geothermal gradients of 45-50 mKm™ were determined. Leblanc et al. (2007)
report a sediment thermal conductivity of 1.1 Wm™ K™ at the seafloor. As vertical heat
flow is simply the product of geothermal gradient and sediment thermal conductivity, a
seafloor heat flow value of 49.5 mWm™ has been calculated at the Torbrook gas hydrates

mound using the low (hydrostatic) end member geothermal gradient of 45 mKm™. The
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gradient of 45 mKm™ is slightly higher than most gradients recorded in regions
unaffected by salt (~40-44 mKm™), however, the Leblanc et al. (2006) gradient is much
better agreement with these stations than with the low gradients (< 35mKm™) recorded
with our probe for the shallow water stations.
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Figure 3.13: BSR depth at the Torbrook gas hydrates mound. Horizontal dashed black line represents
seafloor depth and diagonal dashed black lines represent sediment temperatures based on varying
geothermal gradients from 40-55 mKm™. Solid black lines represent solid to gas phase change boundary for
methane gas hydrates under both lithostatic and hydrostatic pressures (From Leblanc et al. 2007).

Despite minor fluctuations recorded in the water column temperatures we have no
definitive evidence suggesting bottom water temperature variations have effected our
seafloor heat flow data in the shallower water regions. However, we do observe large
variations in geothermal gradients recorded in 2004 and 2008 suggesting that something
is effecting the near surface sediment temperatures. BWT recorded in 2004 and 2008
(3.73 °C and 3.70 °C) were very close, and should not significantly effect shallow
sediment temperatures. Furthermore, had near surface sediment temperatures been
effected by BWT variations the temperature vs. depth curves recorded by the shallow

penetrating probe should converge with depth as BWT variations have a greater affect on
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shallower sediment temperatures. Finally, the agreement between the heat flow calculated
using the gradient derived from the depth to gas hydrates phase boundary with our deeper
water heat flow values in regions unaffected by salt suggests that the higher gradient is
likely representative of the true gradient for the region. To determine what is causing the
anomalously low temperatures recorded at the landward limits of heat flow transects Line
1 and 2, as well as the Torbrook gas hydrates mound, requires further investigation.
Shallow temperature variations may be associated with the gas hydrates in the area, or
with fluid flow through the upper sediments.
3.4.2 Correction for Sedimentation

Sedimentation atop crystalline basement following rifting often results in a
temporary decrease in observed heat flow at the seafloor. The influx of new sediments
are deposited at the bottom water temperature which is commonly assumed to be 0 °C,
although may be higher in shallow water regions (Louden and Wright 1989). Time is
required to warm the new cool sediments and reestablish the geothermal gradient at the
seafloor, prior to which, anomalously low geothermal gradients may be recorded in the
seafloor sediments if conduction of heat from below cannot keep pace with sedimentation
(Louden and Wright 1989). For this reason, the seafloor heat flow measurements
acquired in 2008 are not expected to match the predicted basement heat flux's after
McKenzie (1978) and Royden and Keen (1980) without applying a correction for the
effects of sedimentation. A study by Nagihara and Opre Jones (2005) in the Gulf of
Mexico showed notably decreased seafloor heat flow values with increasing
sedimentation rates associated with the Mississippi Fan suggesting that depressed

seafloor heat flow values are not unlikely in regions of continued sedimentation.
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In order to correct for the effects of sedimentation on seafloor heat flow, Louden
and Wright (1989) have proposed correction factor (Cs).

Cs=1-(1 - 2Xerfe(X) - (2/m)Xexp(-X?) (?1)

X = v*(sqrt(t)/sqrt(x)) (72)

Here v, refers to a constant sedimentation rate derived from the compacted sediment
thickness and the period of deposition (t) in Ma. « is thermal diffusivity and radiogenic
heat production is ignored. This method allows for the quick, simple, calculation of Cs
using compacted sediment thickness' in order to remove the effects of sedimentation from
seafloor heat flow measurements to predict a more realistic present day basement heat
flux. Louden and Wright (1989) suggest that calculating a sediment correction factor
using this simplified method yields results in relative agreement with the results
calculated by Hutchinson (1985) using a more complete method involving decompacted
sediment thicknesses. For all sedimentation models an inverse relationship between rate
of sedimentation and seafloor heat flux has been predicted (e.g. Hutchinson 1985, Wang
and Davis 1992)

We have calculated a correction for sedimentation for all seafloor heat flow
measurements acquired along heat flow transects Line 1 and 2 during the 2008 Hudson
heat flow cruise (Table 3.3). Calculations were made using sediment thicknesses derived
from seismic interpretations and depositional velocities calculated using compacted
sediment thicknesses. A depositional period of 200 Ma was used for all stations not
overlying salt bodies (Table 3.3). The sediment thickness for stations overlying salt
diapirs refers to sediment above salt. Salt diapirs migrate upwards through the sediment

column from depth rather than being deposited at the seafloor, therefore, salt
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Heat Offset Bullard Sediment Depositional Depositional Stretching Salt Sed. Cor. Basal Salt Corrected Model 1 Model 2
Flow Heat Flow Thickness Velocity Cs Diapir Heat Flux Basal Heat Flux HF HF
Station (m) (mW/m*2) (m) Period (Ma) (m/Ma) Factor (B) Increase (mW/m*2) (mW/m*2) (mW/m#2) (mW/m*2)
Line 1

HF101 100700 23.9 6400 200 32.0 2.01 0.123 26.83731 26.83731 35.85 44.81
HF102 114200 34.7 7700 200 38.5 2.42 0.156 40.11667 40.11667 36.1428 4517
HF103 124300 37.3 8000 200 40.0 2.84 0.164 43.4172 43.4172 36.33 45.42
HF104 127300 38.1 7900 200 39.5 3.05 0.161 44.24934 4424934 36.4 45.5
HF105 128500 46.9 2600 90 28.9 3.12 0.065 D1 1.08 49.95788 46.05423529 36.42 45.53
HF106 131700 39.3 7700 200 385 3.28 0.156 45.43473 45.43473 36.46 45,58
HF107 134800 40.3 7900 200 395 3.4 0.161 46.80442 46.80442 36.49 45.61
HF108 140900 37.1 8100 200 40.5 3.7 0.167 43.28457 43.28457 36.55 45.69
HF109 146100 39.4 3700 120 30.8 3.9 0.085 D2 0.94 42.7293 45.37624779 36.58 45.73
HF110 150900 43.3 3100 120 25.8 4.1 0.068 D2 1.05 46.23141 43.96013629 36.61 45.76
HF111 154300 65.7 1800 90 20.0 4.3 0.042 D2 1.23 68.43969 55.72832454 36.63 45.79
HF112 157600 54.9 1700 70 24.3 4.43 0.045 D2 1.16 57.38697 49.66521203 36.65 45.81
HF113 160300 43.1 5900 200 29.5 4.46 0.111 47.87117 47.87117 36.65 45.81
HF114 166800 43.4 5900 200 29.5 4.6 0.111 48.20438 48.20438 36.66 45.83
HF115 172600 56.6 3000 145 20.7 4.81 0.058 D3 1.1 59.8828 53.96032527 36.68 45.85
HF117 180000 51.7 2500 145 17.2 5 0.046 D4 1.1 54.09371 48.74378264 36.7 45.87
HF118 187800 43.3 4800 200 24.0 5.06 0.070 46.31368 46.31368 36.7 45.88
HF119 201700 46 4800 200 24.0 5.2 0.070 49.2016 49.2016 36.71 45.89
Line 2

HF201 34300 29.1 6500 200 325 2.01 0.125 327 32.7 35.82 447772
HF202 43100 31.7 5900 200 29.5 2.24 0.111 35.2 35.2 36 44,9995
HF203 53500 43.9 7000 200 35.0 2.59 0.138 50 50 36.2 45.2434
HF204 62200 547 6000 200 30.0 3.12 0.161 63.5 47.8 36.38 45.4799
HF205 66300 65.5 3000 80 375 3.35 0.084 D5 1.330 71 53.4 36.44 45.5516
HF206 70000 61.3 1000 40 25.0 3.51 0.034 D5 1.330 63.4 47.6 36.51 45.5938
HF207 72600 72.8 1000 40 25.0 3.63 0.034 D5 1.330 75.3 56.6 36.54 45.6221
HF208 75600 60.7 800 40 20.0 3.75 0.026 D5 1.330 62.3 46.8 36.56 45.6478
HF209 79500 N/A 6300 200 315 3.9 0.120 50.3 50.3 36.58 45.6768
HF210 86000 47.1 6500 200 325 4.22 0.125 53 53 36.62 45.7291
HF219 152000 42.6 5500 200 27.5 4.46 0.101 46.9 46.9 36.65 45.7614
HF220 164500 44.5 5200 200 26.0 4.04 0.094 48.7 48.7 36.6 45.7012
HF221 178200 41.1 5300 200 26.5 4.45 0.097 451 45.1 36.65 45.7602

Table 3.3: Corrections table showing correction for sedimentation and correction for both salt and sedimentation. In addition, modelled basal heat flux after
McKenzie (1978) using a lithospheric thickness of 100 km (Model 1) and 125 km ( Model 2) are shown. Cs is correction for sedimentation, stretching factor after

Wu (2006).
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emplacement will not have a cooling effect as surface sedimentation does and should not
be included in our correction for cooling due to sedimentation. The age associated with
the sediments overlying salt, as required for depositional velocity calculation, are inferred
from stratigraphic boundaries as picked in our seismic interpretations.

Corrections for sedimentation were applied to determine the basal heat flux rather
than the present day seafloor heat flux for later comparisons with predictions from crustal
rift models. As measurements above salt diapirs recorded anomalously high geothermal
gradients due to the focusing effects of salt on heat flow, these measurements are not
representative of the true underlying basal heat flux and require an additional correction
for the conductive effects of salt, as described in section 3.4.3. It should also be noted that
the predicted values after McKenzie (1978) and Royden and Keen (1980) do not account
for any additional heat generation due to radioactive decay of uranium, potassium and
thorium which likely occur in the sediment pile overlying the basement.

3.4.3 Effects of Salt on Heat Flow

The thermal conductivity of salt is approximately 6 W/m/°C at room temperature,
decreasing as temperature increases to a value of ~4.5 W/m/°C at temperatures of 50-100
°C (Birch and Clark 1940). This conductivity value is significantly higher than the values
for most clastic and carbonate sediments which range from 1.5-2.5 W/m°C dependant on
lithology, burial depth, compaction and water content (Clark 1966). As salt has a
significantly higher thermal conductivity than most sediments, heat preferentially flows
through salt, resulting in thermal anomalies above, beside, and beneath salt structures.
Salt bodies are overlain by positive and underlain by negative thermal anomalies (Fig.

3.14) (O'Brien and Lerche 1987, Yu et al. 1992). Assuming a static salt body and purely
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conductive heat transfer the thermal anomaly predicted is directly proportionate to the

shape, height and volume of the salt body, as well as the contrast in thermal

conductivities between the salt and surrounding sediments (Jensen 1983).
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Figure 3.14: Simple 2D conductivity based numerical model showing the effects of a square shaped salt
body on temperature distribution in the case of constant uniform basal heat flux (from Yu et al. 1992).

To determine the effects of salt diapirs on seafloor heat flow, a series of static,
purely conductive, 2D numerical models were run (Appendix E). The models were
designed to replicate the effects of salt bodies present in lines 1400 and 88-1A on
seafloor heat flow. The relative increase in seafloor heat flow above salt diapirs observed
in the models is used remove the effects of salt on measured seafloor heat flow in an
attempt to determine the basal heat flux across the central Scotian Slope. Models were
run replicating diapirs D1-D4 on line 1400, and D5 on line 88-1A. Our modelling script

does not allow for the presence of salt overhangs/canopies only allowing us to model
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vertical salt diapirs (Appendix E). As a result, the slight overhangs observed in our
seismic interpretations of the salt diapirs had to be removed.

Our model is a simple two layer model consisting of a basal salt layer with a
thermal conductivity of 5.9 Wm™'K™' overlain by sediments with increasing conductivity
with depth from 2.2 Wm™ 'K at the seafloor to 3.1 Wm 'K at the salt/sediment boundary
(Fig. 3.15). The increase in thermal conductivity with depth in the sediment pile is
included to account for increasing conductivity due to compaction. A constant basal heat
flux of 50 mWm™ was assigned in the models. This value is slightly higher than the
measured sediment corrected seafloor heat flow values of ~47 mWm™ at the seaward
limit of lines 1400 and 88-1A. The basal heat flux of 50 mWm™ was used as a high end
member in an attempt to match the measured values above salt diapirs.

It was noted by Yu et al. (1992) that in order to allow the basement heat flux to
flow preferentially through the less resistant, higher thermal conductivity, material that
the model must be wide enough for the heat pathways to be affected only by the
conductivity of the materials and not by the edges of the models. Thus, varying distances
between the salt body and the edges of the models were tested to determine how edge
affects effected the model output and how far laterally the models needed to be extended
in order to escape these affects. To escape significant seafloor heat flow variations due to
edge effects a distance equivalent to twice the width of the salt body on either side of the
diapir was required in the models.

As with all salt bodies, multiple interpretations of salt diapirs size, shape and
distribution are possible. Two possible interpretations of diapir D5 are shown in Figure

3.15 showing the salt body as a large salt canopy with a thick vertical feeder (A), and as a
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thick vertical diapir (B). The heat flow measurements recorded above this salt body are
anomalously high, reaching values upwards of 72 mW/m?, and thus in the simple models
the salt was interpreted as a thick vertical diapir as a high heat flow end member. In total,
eight simple salt models were run. Of these five were modelled after diapir D5 in line 88-
1A, and one was run for each diapir D1, D2 and D3/D4 in line 1400. The numerous runs
for diapir D5 were done to test the effects of variations in the diapirs height/proximity to
the seafloor, as well as variations on basal heat flux effects modelled seafloor heat flow
(Appendix E). Of the models run after diapir D5 it was determined that Salt Model 2 was

in best agreement with the observed seafloor heat flow data.
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Figure 3.15: Two possible interpretations of salt diapir D5 on Lithoprobe Line 88-1A (Fig. 3.5) showing

A) large tongue canopy with thick, squeezed, feeder and B) large vertical salt diapir.

In an attempt to better constrain the basal heat flux across the central Scotian

Slope, sediment corrected heat flow values were further corrected for the conductive

A-32



Final Report Year 3 OETR Project Appendix A

effects of salt on heat flow for heat flow stations overlying salt bodies. To do this we use
the relative increase in modelled heat flow above diapirs D1-D5 to remove the associated
increase in heat flow associated with the purely conductive effects of salt from our
measured, sediment corrected, heat flow measurements. The sediment corrected
measured heat flow values are simply divided by the ratio modelled heat flow above salt
over modelled heat flow unaffected by salt in a simple attempt to remove the conductive
effects of salt as measured at the seafloor from true basal heat flux. Salt and sediment
corrected heat flow data are included in Table 3.3.

Salt Model 2 is modelled directly after D5 mimicking height and shape. With
lateral distances of 40 km between the diapir and edges of the models the model is wide
enough to escape any edge effects as noted by Yu et al. (1992). As large variations in
measured seafloor heat flow occurred across diapir D5 despite little variation in diapir
height or proximity to seafloor, we used one simple correction factor for all
measurements above this diapir. This model predicts a maximum heat flux above the salt
diapir of ~56 mWm™ and surrounding background values in regions unaffected by salt of
~42 mWm™ (Fig. 3.16). The modelled increase in heat flow above salt is 1.33 times that

of the surrounding regions unaffected by salt.
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Figure 3.16: Simple 2D conductivity based thermal model of diapir D5 showing effects of salt on seafloor
heat flow. Salt is outlined in green, and the seafloor in blue. The modelled seafloor heat flow is plotted
above as a red line and measured values are plotted as red squares.

Salt Model 6, representative of diapir D1 in line 1400, is overlain by heat flow
station HF105. The modelled seafloor heat flow of 45.6 mWm™ is 1.08 times higher than
the modelled background values of ~42 mWm™ in regions unaffected by salt (Fig. 3.17).
Salt Model 8 is modelled after both diapirs D3 and D4 and is overlain by heat flow
stations HF115 and HF116. A modelled increase from ~41 mWm™ in regions unaffected
by salt to 45.5 mWm™ above salt was observed for both diapir D3 and D4. Both heat
flow stations are located just off the crest of diapirs the salt diapirs, and experience a
relative increase in modelled heat flow of 1.11 mWm™ due to the conductive effects of
salt on seafloor heat flow (Fig. 3.18).

Salt diapir D2 is overlain by heat flow stations HF209-HF212. Salt Model 7 is
representative of this diapir, however, as canopies are not possible in our models, the

diapir has been inferred as a thick, vertical, basement rooted salt body (Fig. 3.19).
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Figure 3.17: Simple 2D conductivity based thermal model of diapir D1 showing effects of salt on seafloor
heat flow. Salt is outlined in green, and the seafloor in blue. The modelled seafloor heat flow is plotted
above as a red line and measured values are plotted as red squares.
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Fig. 3.18: Simple 2D conductivity based thermal model of diapir D3/D4 showing effects of salt on seafloor
heat flow. Salt is outlined in green, and the seafloor in blue. The modelled seafloor heat flow is plotted
above as a red line and measured values are plotted as red squares.
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Figure 3.19: Simple 2D conductivity based thermal model of diapir D2 showing effects of salt on seafloor
heat flow. Salt is outlined in green, and the seafloor in blue. The modelled seafloor heat flow is plotted
above as a red line and measured values are plotted as red squares.

Modelled heat flow in regions unaffected by salt yielded a value of ~42 mWm™.
Modelled seafloor heat flow values above salt varied from one station to the next, thus
different correction factors were applied for the different stations located across the
diapir. Station HF209, located at the very edge of diapir D2, recorded a modelled value of
39.5 mWm™, only 0.94 times the background value of ~42 mWm™. This low heat flow
value associated with the stations location at the edge of the diapir will actually require
an increase in heat flow to correct for the conductive effects of salt. Stations HF110,
HF110 and HF112 recorded modelled seafloor heat flow values of 44.2 mWm™, 51.8
mWm™ and 48.5 mWm™, yielding respective correction factors of 10.5, 1.23 and 1.16.

our simple modelling suggests that the increase observed above salt bodies in our
measured heat flow data can not be reproduced by the strictly conductive effects of salt

alone. In general, the purely conductive 2D models under-predict the heat flow above
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salt. A second mechanism such as convection of fluids is likely affecting the temperatures
observed above the salt bodies. Keen (1983) ran a series of similar conductivity based 2D
models in an attempt to determine if the conductive effects of salt could sufficiently
increase temperatures above the Primrose diapir on the Scotian Shelf to account for an
observed maturation anomaly (Rashid and MacAlary 1977). While the temperature
increase due to the conductive effects of salt were calculated to be 10-20 °C, this alone
was not enough to result in the observed maturation anomaly.

Keen (1983) hypothesized that upon diapiric intrusion, faulting and fracturing of
the sediments adjacent to the diapir could create a migration pathway for hot fluids from
depth to the top of the diapir, which could cause significant increases in temperature and
thus maturation above the diapir. Under favourable circumstances, it was found that in
addition to the conductive effects of salt, migration of hot fluids from depth could
produce the observed maturation anomaly above the Primrose diapir. Keen suggests that
much of the rising fluid will likely continue to flow vertically beyond the crest of the
diapir towards the surface, which supports the idea that convection of fluids could be
effecting our observed variation in seafloor heat flow measurements. However, further
modelling is required in order to test this hypothesis.

3.5 Simple Crustal Models

Once measured heat flow data have been corrected for the effects of
sedimentation and salt to give approximations of present day basal heat flux are were able
to begin analysis and comparisons of our measured data with predictions from simple
crustal rift models. To theoretically predict the basement heat flux across our study area

the uniform stretching model of McKenzie (1978) and the dual stretching model of
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Royden and Keen (1980) were employed. We attempt to match modelled present day
basal heat flux with our sediment and salt corrected measured heat flux data to constrain
basal lithospheric temperatures and lithospheric thicknesses while predicting the margins
heat flux history. An introduction to simple rift models and our MatLab scripts used in
modelling are included in Appendix F.

To determine the basal heat flux across the central Scotian Slope we must first
determine the crustal stretching factors across the margin. The pure shear model assumes
uniform extension of the crust upon initiation of rifting. The predicted basal heat flux as a
function of time is directly related to the initial crustal stretching factor (), athenospheric
temperature (T1), and total lithospheric thickness (A). Varying crustal stretching factors
(B) were defined by Wu (2007) along the trace of SMART refraction Line 2 based on
crustal thicknesses derived from velocity modelling (Fig. 3.20). SMART Line 2 runs
coincident with Lithoprobe line 88-1A. An offset of 156 km on SMART Line 2
corresponds with the 0 offset of Lithoprobe Line 88-1A. Using this, we were able to
determine crustal stretching factors at known positions (thus at our heat flow stations) on

line 88-1A.

Stretchina Factor vs. Offset (SMART Line 2)
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Figure 3.20: Stretching factor (B and 8) vs. Offset (km) for SMART Line 2 after Wu (2007) and Keen and
Beaumont (1990). Black line represents the trace of coincident seismic reflection profile 88-1A. Vertical
red lines represent seafloor heat flow locations. Corresponding location of Lithoprobe line 88-1A is shown
from A to A' in Figure 3.1.
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The predicted values for present day basal heat flux are calculated according to a
rift age of 200 Ma with crustal stretching factors derived from Wu (2007). Stretching
factors range from 2.01 at station HF201 on the upper continental slope to 4.46 at station
HF219 towards the seaward limit of the Scotian Slope (Table 3.3). As expected, no
significant variation in present day heat flux is predicted by the models associated with
variations in B. All modelled present day basal heat flux values are within 1 mW/m?,
independent of B values used. However, variations in 3 across the margin do significantly
effect the heat flow history over the past 200 Ma (Fig. 3.21, Fig. 3.22). Therefore,
although no present day heat flow variations exist associated with varying B, varying
stretching factors across the margin may still have implications for hydrocarbon
maturation and the thermal evolution of the margin. Using the pure shear crustal rift
model present day heat flow was predicted at all heat flow stations as constrained by
associated crustal thicknesses after Wu (2007) and lithospheric thicknesses (A) of both
125 km (Crustal Model 1) and 100 km (Crustal Model 2). Varying lithospheric
thicknesses were tested in an attempt to match predicted heat flow to corrected measured
data while maintaining the confines set by the known crustal thicknesses.

The dual stretching model predictions for the regions heat flow history vary
depending on the amounts of upper lithospheric stretching () and lower lithospheric
stretching (8). Keen and Beaumont (1990) used large o values in comparison with the
small B values to explain the observed uplift of the Lahave Platform on the central
Scotian Shelf. The proportions of lower lithospheric stretching are uncertain across the
central Scotian Slope. We are able to obtain varying crustal heat flux histories while

maintaining known crustal thickness' by varying the amount of sub-crustal thinning.
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Figure 3.21: Heat flux vs. Time graph for Crustal Model 1 showing change in crustal heat flux with time
for select heat flow stations based on associated crustal stretching factors as shown in Fig. 3.14 and A =125
km. Time (in Ma) represents time following rifting.
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Figure 3.22: Heat flux vs. Time graph showing change in crustal heat flux with time for select heat flow
stations based on associated crustal stretching factors as shown in Fig. 3.14 and A =100 km. Time (in Ma)
represents time following rifting.
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Applying a large sub-crustal stretching factor has a negligibly small effect on present day
basal heat flux when compared to the uniform stretching model predictions. However, it
should be noted that uniform and dual stretching models, although arriving at similar
present day heat flux values, have very different heat flux histories, particularly over the
first ~50 Ma (Fig. 3.21, Fig. 3.23). This may significantly effect the hydrocarbon

maturation history of the margin and is discussed in further detail in Chapter 4.
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Figure 3.23: Dual stretching heat flow plot showing effects of varying 6 on crustal heat flux with
lithospheric thickness A =125 km.

Our goal is to use the predicted basement heat flux histories from the uniform and
dual stretching models in combination with measured sea floor heat flow values to
produce a self consistent 3D thermal model of the central Scotian Slope where modelled
seafloor heat flow values match measured values. Once the 3D model configuration has

been set we are able to test the effects of varying basement heat flux histories as defined
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by crustal thickness and varying 3 and 6 on predicted seafloor heat flow. By testing
various basement heat flux histories and comparing the predicted seafloor heat flow from
the 3D models with the measured seafloor heat flow values of the 2008 Hudson cruise we
are able to produce a 3D model constrained by both measured seafloor heat flow data and
modelled basement heat flux data that remains consistent with observed crustal
thicknesses.
3.6 Heat Flow Data Discussion and Interpretations

After analysis of our measured seafloor heat flow data we conclude that all
stations from the Torbrook gas hydrates mound and shallow water stations HF101,
HF102, HF201 and HF202 recording gradients <35 mKm'' are not representative of
purely conductive heat transfer sourced from Earth's interior. At present we are unable to
determine the cause of these anomalously low gradients, however, after comparison with
the deeper sourced temperature data from the gas hydrates phase boundary after Leblanc
et al. (2006) we suggest the data should not be included in our overall analysis of the
study areas heat flux. Corrections for the effects of sedimentation and salt on measured
seafloor heat flow have been applied to approximate the present day basal heat flux from
our measured seafloor data. Plots of corrected seafloor heat flow data are compared with
present day basal heat flux predictions from the McKenzie uniform shearing model
across both seismic lines 1400 and 88-1A in Figure 3.24.

For heat flow transect Line 2 (Lithoprobe line 88-1A) the general basal heat flux
trend varies slightly across the margin increasing from ~45-48 mWm™ towards the
seaward limit of the line to ~47-53 mWm™ in the central/landward regions of the line.

These values exclude the slightly elevated values above stations HF205 and HF207 and

A-42



Final Report Year 3 OETR Project Appendix A

l1400 m"i 4

il I - s S5l and Sed. Corrected HF
\ e easiet et i
|Heat Flow 30 - : _ / __ :
mim) 40 et NL & L ¥ —
.: e Crisial Model 2 Heal Flow

i

Ohel o 00000 WO OO0 MOW 0 0 20 2000

I

...

(w) pdaq

e Sait and Sed. Comected HF

e czsied Heal Fow
0 CrustalMoel 1 HeatFow
Heat Flow — e
() 49 ——3—F——3
Offset m: 30000 50000 70000 80000 110000 130000 150000 170000 190000
0 i T & - Y P P S— — PO - A S Vi S
zoan?l!\l\ ‘
— :
2 40004
3
30000

Fig.3.24: : Comparisons between sediment and salt corrected measured heat flow data and modelled
basement heat flux data for different lithospheric thicknesses and crustal stretching models after the
uniform shear model of McKenzie (1978) for both line 1400 and 88-1A. White squares represent stations
with anomalously low gradients and the blue circle represents heat flow value calculated after Leblanc et al.
(2006) from the Torbrook gas hydrates mound. Below the heat flow plots are our stratigraphic
interpretations from the seismic images as shown in Figures 3.5 and 3.6 for lines 1400 and 88-1A
respectively.

the anomalously low values for stations HF201 and HF202. This increase in heat flow in
the direction of thickening continental crust is counter to what one would expect for a

young margin, however, for an old margin such as ours the majority of increased heat
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flow associated with thinning during rifting has decayed. The increase in heat flow in the
landward direction is possibly due to the increase in radiogenic heat production
associated with the thickening continental crust. Our simple 2D models do not account
for radiogenic heat production in the crust or sediments and the effects of adding
radiogenic heating will be investigated in further detail in Chapter 4.

The corrected basal heat flux values calculated above salt diapir D5 are in
relatively good agreement with the surrounding measurements at stations HF203, HF209
and HF210. We note that the increase in measured heat flow above salt is not uniform
and cannot be entirely removed using a correction factor derived from a simple, static, 2D
conductivity based numerical model as large variations in measured heat flow above salt
persist even after correction for the conductive effects of salt. Other factors such as salt
movement, out of plane variations in salt geometry or convective fluid flow through
sediments overlying the diapir may also be effecting the measured heat flow values
(Keen 1983).

In comparing our corrected measured seafloor heat flow data from heat flow
transect Line 2 with the predictions for present day basal heat flux from the McKenzie
(1978) uniform shear rifting model we find that the thinner lithospheric thickness of 100
km (Model 2) yields a better fit to the corrected heat flow data (Fig.3.24). There is a
relatively good fit between our measured and modelled data, particularly towards the
seaward limits of the line. When the heat flow calculated from the Torbrook gas hydrates
phase boundary is extrapolated onto heat flow transect Line 2 and used in place of the
anomalously low values calculated from HF201 and HF202 we see fairly constant heat

flow across the line. Above the central region of the transect the measured data records
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slightly higher basal heat flux values than Crustal Model 2 predicts. The two most
landward measured data points show good agreement with the Model 1 (A=125 km)
results (Fig. 3.21). However, as these data points recorded anomalously low measured
geothermal gradients, this fit is most likely coincidental and not representative of the true
basal heat flux as constrained by simple crustal rift models.

Heat flow transect Line 1 (NovaSPAN line 1400) recorded a corrected basal heat
flux of and ~42-47 mWm™ in the landward portions of the line ~46-49 mWm™ towards
the seaward end excluding anomalously high measurements above salt which persisted
even following salt correction. Here we ignore stations HF101 and HF102 due to their
anomalously low measured gradients. The slight increase in basal heat flux in the
seaward direction recorded for this transect is opposite to the decrease identified in Line
2. However, as the error in measured heat flow is ~2-7 mWm™ for regions unaffected by
salt an interpretation that for both lines a average basal heat flux between ~44 and 50
mWm™ is not unreasonable for the region.

After the correction for salt was applied, only stations HF111 (55.7 mWm™) and
HF115 (54.0 mWm™) recorded anomalously high heat flow values. Again, we see the
increase in heat flux above salt is not uniform and cannot be corrected using a simple
conductivity based 2D model. All other heat flow stations are in relatively good
agreement with the predictions from Crustal Model 2 (fig. 3.24). The increase in heat
flow in the seaward direction agrees with the model predictions, however, the measured
increase is slightly greater than the modelled increase. The heat flow of 49.5 mWm™
calculated from the depth to BSR after Leblanc et al. (2006) at the Torbrook mound is

slightly higher than the other recorded landward gradients at stations HF103-107 (43-47
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mWm™); however, it is still in much better agreement than with the anomalously low
measurement of 26.8 mWm™at HF101.

Our sediment and salt corrected basal heat flux is plotted against crustal stretching
factor (B) in Figure 3.25 along with our modelled results for both Crustal Models 1 and 2.
The general trend shows good agreement between our corrected heat flux data and the
predicted values using the high heat flow end member Crustal Model 2. Although there
exists notable scatter in our measured corrected data, we see that with the exception of
station HF209, which has an extremely small error bar due to the lack of in-situ
conductivity analysis for this station, that all modelled data from Model 2 fall within the

error of the measured heat flow.
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Figure 3.25: Heat flux vs. Crustal stretching factor (B) plot showing corrected (sediment and salt)
measured seafloor heat flow data as blue squares. Filled green squares represent measurements above salt
bodies and white filled squares represent stations with anomalously low gradients.

We can conclude that using simple 2D crustal rift models without including the
effects of radiogenic heating that Crustal Model 2 with the thinner lithosphere yields a
much better match to our corrected measured data. With the addition of radiogenic
heating within the sediment pile and underlying crust we may find that the thinner
lithospheric model over predicts the present day heat flux when compared with our

modelled data and that, in fact, the thicker lithosphere yields a better fit to our measured
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data. To test this hypothesis and to determine how significantly 3D effects of salt bodies
effect heat flow we will run a series of more complex, dynamic 3D models in Chapter 4

using PetroMod 11 software.
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Thermal & Petroleum System Modelling (Phase Il) of seismic line
NOVASPAN 1600 and the revision of 2D PS modelling of Seismic Lines
NOVASPAN 1400 and FGP 88-1A, Scotian Basin, Offshore Nova Scotia

based on new heat flow data of 2008

A. EXECUTIVE SUMMARY

This final Phase II report has established a complete evaluation and
interpretation of two-dimensional thermal and petroleum system modeling of
three seismic lines (NOVASPAN 1400, FGP 88-1a and NOVASPAN 1600) from
the central portion of the Scotian Basin, offshore Nova Scotia. The Petroleum
System Modelling used the PetroMod 2D modelling software (version 11.03; I[ES
Inc., Germany [currently of Schlumberger Inc.]). The report is an extension of
the Phase I study of the OETR-Dalhousie contractual agreement that was
completed in 2007 and the report was submitted in January 2008
(Mukhopadhyay, 2008). The final report includes a revision of two-dimensional
petroleum system modelling on seismic lines NOVASPAN 1400 and FGP 88-1a
based on newly acquired heat flow data (Table 1; Louden et al., 2009). In
addition, a new composite petroleum system modelling was carried out on

seismic line NOVASPAN 1600.

As a requirement of the modeling parameters, a complete suite of geological,
geophysical, and geochemical parameters have been incorporated as input
parameters. Other than basic geological properties included the timing of the
salt movement (both diapiric and allochthonous stages), data on the individual
faults (opened or closed), reservoir properties, multi-component kinetics of
candidate source rocks from the Scotian Margin, and the phase behavior of the

individual hydrocarbons.

The final report of the Phase II research of two-dimensional petroleum system
modelling of three seismic lines for the OETR-Dalhousie University contract

established the following conclusions:
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A. 1. Modelled and Measured Heat Flow Calibration

The modelled (used transient heat flow since the rifting) and measured
heat flow values in all three seismic lines (NOVASPAN 1400, FGP 88-1a
and NOVASPAN 1600) suggest that with the exception of a few heat flow
values in all three lines, other measured values are closely correlated.
The anomalous heat flow values are usually situated around the
periphery of salt diapirs.

The discrepancy of heat flow trends between the measured and modeled
heat flow values is caused by: (a) an outline of the salt in the upper part
of the section may not correctly drawn on each of the seismic line; and
(b) problems in attaining a well-defined basement heat flow along the 2-D
seismic section

The heat flow values on top of the salt diapirs indicate that they are
comparatively hotter in comparison than the heat flow values on the
flank of the salt diapirs. However, the amount of heat flow variations
depend on the thickness of individual salt structures and the proximity
of the salt diapirs to the sediment water interface locations,

Comparative heat flow values indicate that this part of the Scotian Basin
(between western Sable Subbasin and eastern Shelburne Subbasin) is

much cooler than was previously thought.

A.2. Maturity Trends and Hydrocarbon Accumulations

In all three seismic lines, the present day temperature and the maturity
profiles illustrate a higher temperature and maturity on top of the salt
diapirs compared to the flank region. Moreover, because of lower heat
flow history in this part of the Scotian Basin, the maturity data indicates
that even the late Triassic source rocks could lie within the main dry gas
generation zone. Similarly, the pore pressure profiles in all three seismic

lines indicate that all of the late Triassic or early Jurassic and late
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Jurassic conceptual reservoirs may encounter an overpressure situation.
The transformation ratio of five major source rocks indicate that the
source rocks other than Cretaceous Verrill Canyon have more than 90%
hydrocarbon transformations,

Because of lower heat flow trends (based on newly measured data) of all
three seismic lines in comparison to previous report (Mukhopadhyay,
2007), all conceptual reservoirs specially in the early Cretaceous and
Palaeocene periods in the slope may contain more oil (C15+ and C6-C14
hydrocarbons; especially in seismic line 1400). However, in both seismic
lines FGP 88-1a and NOVASPAN 1600, the liquid hydrocarbons (0il and
condensates) are mostly associated with mainly dry and wet gas

components (C1 and C2-C5 hydrocarbons).

A.3. Hydrocarbon Mass Balance

The comparative mass balance of hydrocarbons (in Metric Tons) in three
seismic lines (NOVASPAN 1400, FGP 88-1a and NOVASPAN 1600)
illustrate that: (a) the seismic line 88-1a has the highest amount of
hydrocarbons generated and expelled from four deeper source rocks, and
accumulated in the Upper Jurassic and Triassic reservoirs; (b) the
seismic line 88-1a accumulated at least five times more hydrocarbons in
various reservoirs compared to lines NOVASPAN 1400 and NOVASPAN
1600; and (c) the main HC accumulations in lines 88-1a and NOVASPAN
1600 (in lower saturations) are concentrated in the late Triassic, late
Jurassic, and early Cretaceous reservoirs while the main accumulation is
restricted to the late Jurassic reservoir in the line NOVASPAN 1400.

The major loss of expelled hydrocarbons was caused by major migration
loss due to seal instability allowing outflow of hydrocarbons from the top
of each individual reservoirs in all three lines. The other main

hydrocarbon loss was connected to the lateral seal inadequacies possibly
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caused by lower sediment compaction in this region. The lower heat flow
could be another issue related to sediment compaction,

e Seismic lines FGP 88-1a and NOVASPAN 1600 - The late Jurassic and

Early Cretaceous reservoir hydrocarbons contains more than 80% dry
gas (methane) and 20% condensate (C6-C14 HC components); Seismic

line NOVASPAN 1400 - Early Cretaceous and Palaeocene reservoir

hydrocarbons contain greater than 60% liquid hydrocarbons (C15+ and

C6 to C14).
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Thermal & Petroleum System Modelling (Phase Il) of seismic line
NOVASPAN 1600 and the revision of 2D PS modelling of Seismic Lines
NOVASPAN 1400 and FGP 88-1A, Scotian Basin, Offshore Nova Scotia

based on new heat flow data of 2008

1. INTRODUCTION

1.1. Administrative Aspects

Global Geoenergy Research Limited (GGRL) of Halifax, Nova Scotia has finalized
his contract obligation submitting the final research report for the 2D petroleum
system modelling of three seismic lines (NOVASPAN 1400, FGP 88-1A, and
NOVASPAN 1600) that was performed by GGRL between May 17 and December
31, 2009. The Phase II study of the research contract was designed to perform
two-dimensional thermal and petroleum system modelling of seismic line
NOVASPAN 1600 and the revision of seismic Lines NOVASPAN 1400 and FGP
88-1A based on the new heat flow data. In the summer of 2008, the new heat
flow data was collected by Prof. Keith Louden and his associates from the
Dalhousie University. The final interpretation of the heat flow data was

completed in 2009 (Table 1; Louden et al., 2009).

This final report is an extension of the Phase I study of the OETR-Dalhousie
contractual agreement that was completed in 2007 and the final report was
submitted in January 2008 (Mukhopadhyay, 2008). Global Geoenergy Research
Limited had performed the second phase of the 2D modelling work based on
the guidelines specified in the proposal to OETR-Dalhousie that was submitted
on May 2, 2009. A preliminary report (with interpretations) of the Phase II
study has already been submitted to Prof. Keith Louden in September 2009 (as
power-point presentations; Mukhopadhyay, 2009).

The total contract price of the Phase II study for Global Geoenergy Research
Limited (GGRL) has been finalized at $35,000.00 + 13% HST. As Global
Geoenergy Research Limited has already received a total sum of $23,333.34
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(two-third of the Phase II contract money of $35,000.00) plus 13% HST in two
instalments, a final invoice of $11,666.66 + “13% HST was enclosed along with

this report.

1.2. Objectives

The objectives of the proposed research are to document the following
information using 2D Petroleum System Modelling of one new composite
seismic line (NOVASPAN 1600) and on two revised composite seismic lines
(NOVASPAN 1400 and FGP88-1a).

o Define the source rock maturity and the burial, heat flow, temperature,
and pressure histories through geological time intervals using the
measured heat flow data,

o Identify the hydrocarbon migration fairways: vertical and lateral
migration and charge characteristics of each individual reservoir and seal
stability

o Assess each individual reservoir saturation, hydrocarbon phase and
fingerprinting of source rock input within various reservoir hydrocarbon
composition

o Establish the mass balance of hydrocarbon generation, expulsion,
reservoir preservation, and leakage comparing all three seismic lines

(NOVASPAN Line 1400, FGP 88-1A, and NOVASPAN Line 1600).

2. PETROLEUM SYSTEM MODELLING: GEOLOGY, WELLS AND
INPUT PARAMETERS

The Scotian Basin is one of the major passive margin Triassic-Quaternary
epicentres in Eastern Canada. This basin, within Nova Scotia’s provincial
jurisdiction, extends from the Laurentian Subbasin in the east to the Yarmouth
Arch on the United States-Canada border in the west. The aerial extent for
exploration areas of the deepwater Scotian Basin is approximately 150, 000

square kilometres. The Scotian Basin contains Mesozoic-Cenozoic sedimentary
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rocks, which are up to 16 km thick. It developed during the break-up of the
Supercontinent Pangaea in the Late Triassic to Early Jurassic (~230-190 Ma)
Period as North America separated from Africa (Jansa and Wade, 1975;
Welsink et al., 1989; Wade and MacLean, 1990; Louden 2002). In the Nova
Scotia Margin, the extrusive volcanism in the southwest during the Bajocian
age (example; Georges Bank) to the non-volcanic margin in the northeast
(example: Sable Subbasin) as seen through the East Coast Magnetic Anomaly
documents the boundary between the continental and the oceanic crust
(Dehler et al, 2004; Funck et al., 2004; Louden et al., 2005; Wu et al., in

press).

Approximately 167 wells have been drilled in the Scotian Slope region. Only five
wells (Acadia K-62, Albatross B-13, Shelburne G-29, Shubenacadie H-100, and
Tantallon M-41; Figure 1a) were drilled in the Scotian Margin and no
significant quantities of hydrocarbons could be detected in this region. In the
second phase of petroleum exploration activity between 1999-2004, renewed
interest in hydrocarbon exploration in the deepwater offshore Nova Scotia
resulted in the drilling of six wells in the Scotian Margin (Annapolis B-24 /G-
24, Balvenie B-79, Crimson F-81, Newburn H-23, Torbrook C-15, and
Weymouth A-45). However, only in the Annapolis G-24 well, Marathon Oil and
its partners made a gas and condensate discovery in the Mississauga sands
(Middle to Early Cretaceous). Approximately 30 meters of net pay had been

encountered over two zones in the Mississauga (Cretaceous) sands.

This study will include the petroleum system development histories in
sediments between the Late Triassic [Norian: 210 Ma] to Recent period in the
area deepwater sediments of the Scotian Basin. The three seismic lines (FGP
88-1A, NOVASPAN 1600, and NOVASPAN 1400) of the Phase II research for the
Dalhousie-OETR contract were carried out in the western part of the Sable
Subbasin and the eastern portion of the Shelburne Subbasin (Figures A-1). The
sediments within both seismic lines FGP 88-1a and NOVASPAN 1400 are
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associated with salt diapirs (Figures 4a, 4b, and 4c). Line 1600 has also been
connected with some rooted autochthonous Jurassic age base salt structures
and includes some allochthonous salt tongues (Figure 4d). The Torbrook C-15
and Moheida P-15 wells have been projected on line NOVASPAN 1400 line
(Figure 5a). The wells Acadia K-62 (in the shelf) and the Shubecadie H-100
wells could be projected on seismic line FGP 88-1A (Figure 5a). The Balvenie B-
79 well lies close to seismic line NOVASPAN 1600. However, the Balvenie B-79
was not projected on the seismic line 1600. Three shelf wells (Como P-21,
Panuke P-09 and Panuke H-08) have been projected within the seismic line

1600.

The 2D Petroleum System Modelling includes three parts of composite work
schedule: (1) Petrobuilder — this part requires input parameters of geological,
geophysical, and geochemical data; (2) Simulator — in this phase, the modeller
has to define the time and quality of modelling parameters of a chosen seismic
file. Moreover, the modeller has to assign the output parameters using various
kinetics and calibration components; and (3) Viewer 2D — this section of the
software illustrates the final output of the modelling data showing the calibration

of heat flow, maturity, hydrocarbon expulsion, and reservoir saturation, etc.

2.1. Petrobuilder: Input Parameters
The input parameters are similar to that defined in the Phase I Report of the
OETR-Dalhousie contract (Mukhopadhyay, 2008). For details on the input
parameters of various geological, geophysical, and geochemical elements and
their interpretation, refer to Kidston et al. (2002), Mukhopadhyay (2008; 2006),
Eric Negulic (2007), Shimeld (2004), Young (2005), Wade and Mclean (1990),
and Wade et al. (1995). The geological database includes the following
(incorporated by Mukhopadhyay from various literatures):

» Formation boundaries,

» Possible lithology or lithology mixes for each stratigraphic unit,

10
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» Defining the timing of erosion, paleowater depths, and paleotemperature
(through time) from biostratigraphic analysis, and
» Designating the hydrocarbon reservoirs and their proper seals in relation

to various play types, etc.

Various students and staff members from the Department of Oceanography
and Department of Earth Sciences, Dalhousie University have incorporated
the geophysical database on the target three seismic lines (1400, 88-1a, and
1600). GX Technology has provided the depth converted seismic images for
both lines. In the Phase II study of the OETR-Dalhousie University Contract,
the line 1600 and the revised lines of 88-1a and 1400 have been utilized for

the petroleum system modelling.

The geochemical database has been provided by Dr. P. K. Mukhopadhyay.

This data includes the following:

+ defining organic richness of various source rock intervals
and hydrocarbon potential,

% present day maturity, temperatures, and heat flow

% multi-component kinetics of two major source rocks
(Jurassic Verrill Canyon and Cretaceous Verrill Canyon;
Mukhopadhyay, 2006; 2008)

% oil and gas properties for each individual source rock based
on compositional analysis by pyrolysis-gas chromatography

(Mukhopadhyay, 2006).

For the 2D modelling of three seismic lines, the formation boundaries and age of
each stratigraphic and lithological boundary have been assigned from the well
history reports for individual wells (see Mukhopadhyay, 2008). The assignment of
various stratigraphic nomenclatures from each individual well has been
established using earlier publications (Wade and MacLean, 1990; Wade et al.,
1995; Mukhopadhyay, 2008). Similar to Mukhopadhyay (2008), published

11
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biostratigraphic data from the Geological Survey of Canada Basin Database and
recent data from various reports have been utilized for the age, paleo-water
depths, paleo-temperature, and unconformities at various intervals. Moreover,
this data has precisely been established after discussions with various

biostratigraphers and geologists working in Halifax, Nova Scotia.

The lithology and other properties of twelve (11 from the Slope and one from the
shelf; see Mukhopadhyay, 2006; 2008; Figures 5a and 5b) wells from the Scotian
Basin were utilized for splitting various horizons and implementing mixed
lithology. For details of the input for the (a) lithologies, unconformities, and
faults; (b) play types and reservoirs; (c) source rocks and petroleum system
elements; (d) movement and timing of salt structures and their relationship with
the various play types and reservoirs, see Phase I report of Mukhopadhyay,

2008.

2.2. Heat Flow

The entire Phase II modeling is based on the input of heat flow data along
various locations of all three seismic lines (Line 1400, 88-1A, and 1600)
measured by Dr. Keith Louden and his team at the Oceanography Department
of the Dalhousie University. The following Table 1 lists the measured heat flows

and their locations from each individual seismic line.

Offset Shot Depth Heat Flow

Station No. Lat. (N) Long. (W) X Y (m) Point (m) (mW/mn2)
Line 1 (1400 profile)

08-hf101 42°34.07 62°17.48 557731.47 4713136.40 100700 3177 1700.00 23.9
08-hf102 42°26.62 62°15.32 560933.71 4700057.71 114200 2908 2180.00 34.7
08-hf103 42°21.42 62°13.71 562881.08 4690215.09 124300 2708 2467.00 37.3
08-hf104 42°20.07 62°13.29 563876.25 4687289.61 127300 2646 2530.00 38.1
08-hf105 42°18.89 62°12.98 563678.13 4686122.53 128500 2626 2616.00 46.9
08-hf106 42°17.50 62°12.60 564565.41 4683077.27 131700 2563 2685.00 39.3
08-hf107 42°16.15 62°12.24 565420.07 4680149.96 134800 2500 2750.00 40.3
08-hf108 42°13.00 62°11.40 566488.09 4674153.31 140900 2378 2888.00 37.1
08-hf109 42°10.15 62°10.65 567341.83 4669073.51 146100 2276 3031.00 39.4

12
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08-hf110 42°07.45 62°09.93 568113.59 4664439.62 150900 2182 3095.00 43.3
08-hf111 42°05.61 62°09.38 569409.65 4661258.96 154300 2114 3191.00 65.7
08-hf112 42°04.19 62°09.03 570250.24 4658122.33 157600 2050 3301.00 54.9
08-hf113 42°02.51 62°08.61 570317.60 4655408.38 160300 1995 3370.00 43.1
08-hf114 41°58.88 62°07.66 571647.14 464914290 166800 1868 3475.00 43.4
08-hf115 41°55.85 62°06.87 572606.96 4643508.66 172600 1753 3520.00 56.6
08-hf117 41°51.93 62°05.80 574221.49 4636377.85 180000 1606 3778.00 51.7
08-hf118 41°47.85 62°04.74 575833.58 4628743.21 187800 1451 3789.00 43.3
08-hf119 41°40.29 62°02.83 578541.73 4614105.16 201700 1178 3910.00 46

Offset Shot Depth Heat Flow
Station No. Lat. (N) Long. (W) X Y (m) Point (m) (mW/mA2)
Line 2 (88-1a profile)
08-hf201 42°49.75 61°28.46 624265.79 4743901.45 34300 2492 1482.00 29.1
08-hf202 42°46.25 61°24.59 629556.52 4736882.50 43100 2602 1890.00 31.7
08-hf203 42°42.55 61°20.22 636002.1 4728696.165 53500 2731 2341 439
08-hf204 42°37.68 61°16.32 641390.7 4721797.612 62200 2841 2671 54.7
08-hf205 42°35.84 61°14.42 643952.2 4718624.638 66300 2893 2763 65.5
08-hf206 42°34.40 61°13.00 645449.1 4715442.52 70000 1605 2920 61.3
08-hf207 42°33.32 61°11.91 647061.2 4713378.41 72600 2970 3010 72.8
08-hf208 42°32.13 61°10.75 648830.9 4710985.725 75600 3007 3170 60.7
*08-hf209 42°30.36 61°09.11 651737.5 4708062.383 3249
08-hf210 42°27.51 61°06.22 655833.1 4702850.292 86000 3139 3535 47.1
08-hf219 41°58.54 60°37.64 695968.9 4650443.79 152000 3964 4180 42.6
08-hf220 41°53.29 60°32.54 703388.4 4640612.751 164500 4120 4337 44.5
08-hf221 41°47.24 60°26.66 711751.5 4629585.37 178200 4292 4464 41.1
Line 3 (1600 profile)
08-hf309 42°49.85 60°13.60 726101.8 4746783.642 150400 2406 2915 47
08-hf310 42°45.70 60°12.05 728958.4 4739021.285 158700 2242 3085 48.3
08-hf311 42°41.52 60°10.51 730914.9 4731120.244 166800 2077 2356 51.4
08-hf312 42°37.46 60°09.03 733626.4 4723602.946 174800 1919 3539 414
08-hf313 42°34.77 60°08.05 735106.5 4719050.445 179500 1824 3650 34.4
*08-hf314 42°32.15 60°07.08 736643.6 4713450.953 185300 1708 3785
08-hf315 42°30.07 60°06.32 737559 4709570.841 189300 1626 3890 431
08-hf316 42°24.60 60°04.31 740639.6 4700195.174 199200 1429 4065 43.1
08-hf317 42°18.54 60°02.10 744260.9 4689008.382 211000 1196 4220 41.4

13
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The high heat flows (55-65 mW/m#2) in all three seismic lines are connected
to the top of the salt diapirs. The basement heat flux and the paleoheat flow
values have been incorporated based on the measured vitrinite reflectance in
the central Scotia Basin and heat flow generated by various basement

structures.

2.3. Source Rocks

Based on earlier and current research on source rock evaluation of the
sediments from the Scotian shelf and slope wells and the DSDP wells of the
Moroccan Margin and Blake Bahama Basin (Legs 76 and 79), the following
stratigraphic units could be projected as potential source rocks within the
Scotian Slope (modified from Mukhopadhyay et al, 2000; Mukhopadhyay,
2002; Mukhopadhyay et al., 2003; Rullkotter and Mukhopadhyay, 1986,
Rullkotter et al., 1984):

» Late Triassic/Early Jurassic lacustrine;

Middle Jurassic marine;

» Late Jurassic marine (Jurassic Verrill Canyon Formation;

» Early Cretaceous marine (Cretaceous Verrill Canyon Formation);
» Mid-Cretaceous marine (Shortland Shale or Logan Canyon
Formation;

» Early Tertiary marine (Banquereau Formation.

2.4. Assigned Petroleum Systems
Prior to the completion of the PS modelling, no sequence stratigraphic work
was carried out. Therefore, selected conceptual reservoirs and seal rocks have

been defined as the Petrobuilder input data similar to the Phase I studies on

Line 1400 and 88-1a.
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3. PETROLEUM SYSTEM MODELLING: RESULTS AND
DISCUSSIONS

As the area of investigation lies within the eastern portion of the Shelburne
Subbasin and the western part of the Sable Subbasin, the seismic line
NOVASPAN Line 1400 with three major salt diapiric structures starts at the
beginning of all three lines (Figure 1a). Figures 1, 2, 3 illustrate the details of
petroleum system modelling in Petrobuilder and Simulation results for the
seismic lines NOVASPAN 1400, 88-1A, and NOVASPAN 1600 lines respectively.
As discussed earlier, all the above three seismic lines have similar horizon
assignments, lithology mix, petroleum system element names, and similar
geochemical properties (Figures 1b-i; 2b-i to 2b-v; and 3b-i to 3b-iii). However,
the positions of the reservoir units in each seismic line are different. Based on
several simulation runs of each seismic line and correlating the measured heat
flow data (present day), the lateral heat flow variability for each seismic lines
has been assigned in the Petrobuilder portion of the modelling. The following

figure shows some examples of parts of heat flow assigned to all three seismic

lines.
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Figures 1b-ii, 2a-vi, and 3b-iv show the assigned heat flow for each of the three
seismic lines (NOVASPAN 1400, 88-1A, and NOVASPAN 1600). These three
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figures illustrate the extreme variability of heat flow between the shelf region,

areas around a major salt diaper, and ultra-deep slope regions.

3.1. Seismic Line NOVASPAN 1400

Based on the seismic stratigraphy, the assigned conceptual reservoir units in
line NOVASPAN 1400 lie mainly in the deeper slope region (around the three
diapiric salts; Figure 1c-i). The correlation of measured and modelled heat flow
values in this line indicates that some minor variability between these two
parameters will still remain (Figures 1c-ii to 1c-vii). This minor variability
between these two parameters was possibly caused by a lack of calibration of
basement heat flow anomalies. In 2D petroleum system modelling, it is
extremely difficult to incorporate the change of basement flow values in
geological time. However, this variability is minor compared to the 2007
modelling work when no measured heat flow data was available. However, the
2007 modelling data shows better heat flow correlation on top of some diapiric

salt structures (Mukhopadhyay, 2008; Figure 1c-vii).

The present day temperature and maturity profiles illustrate a higher
temperature and maturity on top of the salt diapirs compared to the flank
region (Figure 1lc-viii and Figure 1c-ix). A similar effect could be documented
for the generation of oil and gas as the oil zone could be observed in the
stratigraphically higher zones, which are associated with the diapiric salts
(Figure 1c-x). The pore pressure profile illustrates that deeper Late Jurassic

reservoirs may encounter an overpressure condition (Figure 1c-xi).

The onset of hydrocarbon expulsion data indicates that only the Late Triassic,
Middle and Late Jurassic, and Early Cretaceous source rocks are currently
lying within the hydrocarbon expulsion phase (Figure 1d-i). All other source
rocks above the Early Cretaceous source rocks are currently immature for

hydrocarbon expulsion (Figures 1d-i and 1d-ii). Most of conceptual late
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Jurassic reservoirs are fully saturated with both liquid and gaseous

hydrocarbons.

The flash calculation and source rock fingerprinting of a selected late Jurassic
conceptual reservoir 41834 was mainly saturated with liquid hydrocarbons
(24.8% with C15+ and 32.8% C6-C14 hydrocarbons) with an API of 59.3 and
mainly derived from the Kimmeridgian to Oxfordian marine Type II source rock
(Figures le-ia, le-ib, le-ic, le-id, and le-e). Minor contributions of
hydrocarbons come from the Misaine and Top Jurassic source rocks (Figure
le-ic). The hydrocarbons in the reservoir were fully charged only during the
last 10 Ma although most of reservoir hydrocarbons were partially saturated

before 100 Ma.

Some contrasting source rock input could be observed in two early Cretaceous
reservoirs (numbers 41889 and 41869). The Early Cretaceous reservoir (41869)
that is situated in the middle section of the seismic section contains mainly
liquid hydrocarbons (56% is C15+ oil) originated from the Jurassic Verrill
canyon source rock (Figures le-iia and le-iib). Similar early Cretaceous
reservoir in the ultra-deep water (41889; 54.9 API; Figure le-iiia) consists of
only 40% liquid hydrocarbons (both C15+ and C6-C14 components) and the
rest are gas (methane and C2-C5 components; Figure le-iiib). On the other
hand, the Palaeocene reservoir (42010; Figure le-iva) hydrocarbons (mainly
liquid in vapour phase) was derived from mixed source rock contributions
(Misaine and Jurassic or Cretaceous Verrill Canyon) and has a mixture of both

oil and gas components (Figure le-ivb, Figure le-ivc, and Figure le-ivd).

The mass balance of all reservoir hydrocarbons indicates that reservoir
hydrocarbons in all reservoirs have the following source rock contributions:
17% from late Triassic; 28% from Jurassic Verrill Canyon; 30% comes from the
Misaine formations; and the rest comes from some unknown source rocks

(Figure 1f-i). The composite mass balance calculation also suggests that 150
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MTons of hydrocarbons slowly accumulated during the last 100 Ma although
most of the reservoir hydrocarbon accumulation occurred between 135 and

110 Ma (Figures 1f-ii and 1f£-iii).

3.2. Seismic Line FGP 88-1A

In contrast to line NOVASPAN 1400, the correlation of measured and modelled
heat flow values in line FGP-88-1a indicates that there is only minor variability
between these two parameters (Figures 2b-i, 2b-ii and 2b-iii). The minor
variability as noticed near the major salt diapir may indicate that during
seismic modelling the proper shape of the salt diapir has not been defined
precisely. Therefore, we can notice a slight abnormality around the salt diapir

region (Figure 2b-iii).

Similar to Line 1400, the present day temperature and the maturity profiles
illustrate a higher temperature and maturity on top of the salt diapirs
compared to the flank region (Figures 2c-i, 2¢-ii and 2c-iv). Because of lower
heat flow history in this line, the maturity calibration data indicates that even
the late Triassic source rocks could lie within the main dry gas generation
zone. The pore pressure profile illustrates that all conceptual reservoirs (late
Triassic, late Jurassic, and early Cretaceous) will definitely encounter an
overpressure situation (Figure 2c-iii). The transformation ratio of five major
source rocks indicates that all source rocks below Cretaceous Verrill Canyon

have more than 90% kerogen transformation to hydrocarbons (Figure 2c-v).

In the Shubenacadie I-100 well, the one-dimensional extraction data suggests
that the measured (vitrinite reflectance) and calculated maturity and
temperature lines correlated quite well establishing the accuracy of low heat
flow values in this section (Figures 2d-ii and 2d-iii). Similarly, the pressure
profiles of the Shubenacadie I-100 well coincide quite nicely with the well data
(Figure 2d-iv).
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The onset of hydrocarbon (HC) expulsion on line 88-1a indicates that the HC
expulsion begins in the Triassic source rock around 175 Ma and is still
expelling HCs at a slow pace (Figure 2e). On the other hand, the Early

Cretaceous source rock starts expelling HCs since 110 (Figure 2e).

The conceptual late Triassic reservoirs in the ultra-deep waters of line 88-1a
indicates that these reservoirs are currently fully charged mostly with dry gas
although some reservoirs contain liquid hydrocarbons (Figures 2f-i, 2f-ii, and
2f-iii). The source rock fingerprinting of hydrocarbons within one selected late
Triassic reservoir (number 27339) shows that the HCs are all dry gas (methane)
and were derived from the late Triassic lacustrine Type I or II source rocks
(Figures 2f-iv and 2f-v). One dimensional extraction of one selected late Triassic
reservoir (number 27339) indicates that this reservoir lies in a major
overpressure state so the current reservoir temperature would be between
150°C to 200°C, and has a maturity around 3.5% R, (Figures 2f-vi, 2f-vii, and
2f-viii). Similarly, another late Triassic reservoir (number 27340), HC was
derived from similar late Triassic source rocks (Figure 2f-ix and 2f-x). The
hydrocarbons in those late Triassic reservoirs may generate condensate at the

surface pressure and temperature conditions.

An illustration of hydrocarbon (liquid and vapour) expulsion vectors from the
late Triassic, late Jurassic and early Cretaceous source rocks through various
geological time indicates that the late Triassic reservoirs in the distal part of
the seismic line 88-1a were saturated with liquid hydrocarbons between 144
and 65 Ma (Figures 2f-xi, 2f-xii, 2f-xiii, and 2f-xiv). After 65 Ma, most of the
reservoir hydrocarbons in the late Triassic reservoirs have been transformed or
cracked to dry gas and converted to the vapour phase. In the shelf and upper
slope side of the line 88-1a, the migration of hydrocarbon vectors indicates that
there is a massive loss of hydrocarbons (both laterally and vertically) from three

other conceptual HC-saturated reservoirs of the late Jurassic, Early
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Cretaceous, and Miocene periods (Figures 2f-xiii, 2f-xiv, 2f-xv, and 2f-xvi). It is
quite surprising to see that hydrocarbons were preserved within similar
reservoirs in the deep and ultra-deep water regions of the seismic line 88-1a

(Figure 2f-xvi).

Contrary to line 1400, both late Jurassic reservoirs (numbers 27394 and
27398) the main hydrocarbon component in the reservoir would be methane
(>50%). The liquid portion (mainly C6-C14 hydrocarbons) of the reservoir
hydrocarbons would be an associated component (Figures 2g-i, 2g-ii, 2g-iii, 2g-
iv, and 2g-v). These hydrocarbons in the late Jurassic reservoirs were derived
from an input of three different source rock components (late Triassic, Misaine,
and Jurassic Verrill Canyon; Figures 2g-ii and 2g-iv). Similarly, the
hydrocarbons in the early Cretaceous reservoirs (numbers 27448) in the distal
part of the line also contains a mixture of oil/condensate and methane (>50%)
and were originated from a mixture of late Triassic, Jurassic Verrill Canyon,

and Cretaceous Verrill Canyon source rocks (figures 2h-i, 2h-ii, and 2h-iii).

The mass balance of hydrocarbons in all reservoirs suggests that all reservoir
hydrocarbons will be a composite mixture of oil (C15+)/condensates (C6-C14),
wet gas (C2-C5), and dry gas (C1 or methane) (Figure 2j-i). Figures 2j-ii and 2j-
iii illustrate the hydrocarbon inflow and outflow, generation balance, and total
convertible kerogen, liquid and vapour for all reservoir hydrocarbons within
this seismic line. Compared to line 1400, line 88-1a contains nearly double the
amount of hydrocarbons accumulated (about 2000 MTons) within various

reservoirs (Figure 2j-v).

3.3. Seismic Line NOVASPAN 1600
As discussed earlier, the seismic line NOVASPAN 1600 includes two rooted

diapiric salt structures that have extended tougues and separate allochthonous
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salt bodies (Figure 3a). This line also contains three projected wells (Como P-21

and Panuke wells).

Similar to earlier PS modelling of seismic lines (NOVASPAN 1400 and FGP 88-
la), the correlation of measured and modelled heat flow values in line
NOVASPAN 1600 indicates that there is only minor variability between these
two parameters (Figures 3c-ii, 3c-ii, 3c-iv, and 3c-v). This variability may
indicate the low density of measured heat flow data. Moreover, no measured
heat flow data was available in the shelf and shallower part of the slope region.
Therefore, the correlation of measured and modelled heat flow could not be

achieved.

The present day temperature and maturity profiles illustrate a higher
temperature and maturity on top of the salt diapirs (Figures 3c-vi and 3c-vii)).
Slightly higher temperatures and maturity could also be observed on top of the
allochthonous salt bodies. Because of higher basement structures, the shelf
region is comparatively hotter compared to the slope areas except in the region
surrounding the autochthonous or allochthonous salt bodies. Because of lower
heat flow history of this line, the maturity calibration data indicates that even
the basement rocks in the shelf and early Jurassic sediments in the ultra-deep
slope could lie within the main dry gas generation zone (Figures 3c-vi and 3c-
vii). The pore pressure profile illustrates that only the conceptual late Jurassic
and lower reservoirs would have encountered an overpressure (Figure 3c-viii).
The transformation ratio of five major source rocks indicates that with the
exception of the Cretaceous Verrill Canyon source rock in the ultra-deep water
region on the line, all other lower source rocks in the slope have more than
90% hydrocarbon transformations (Figure 3c-ix). This data also suggests that
the Triassic lacustrine source rock (if present) could be one of the main
hydrocarbon source rocks that has contributed oil and gas within the possible

conceptual reservoirs within the Shelf area.

21



Final Report Year 3 OETR Project Appendix B

The combination of hydrocarbon zones and reservoir liquid or vapour
accumulations indicates that (Figures 3c-x): (a) there are several smaller
accumulations of deep gas reservoirs (especially in the shelf break areas) and
liquid accumulation in the shelf (close to the Como P21 well). As such, the
modelling results clearly indicate the primary reason the reservoir
accumulation barely missed the Como P-21 well as the reservoir is a km away
from the drilled well location. The maturity and temperature data of the 1D line
extraction of the Como P-21 well indicates: (a) the Mohican Formation in that
well could encounter 2.0% Ro and about 175°C temperature (Figure 3c-xi); and
(b) the Jurassic reservoir should encounter a major overpressure (Figure 3c-

xii).

The onset of hydrocarbon expulsion data indicates that since 100 Ma, all five
source rocks have started expelling hydrocarbons (Figure 3d-i). As discussed
earlier, there are several liquid and vapour accumulations that can be

encountered in both shelf and slope areas in this line (Figure 3d-ii). However,

the size of the reservoir would be smaller than line 88-1a.

Hydrocarbon fingerprinting of early Cretaceous reservoirs in the shelf region
(reservoir numbers 67486 and 67540; Figures 3e-ia and 3e-iia) has established
that: (a) the reservoir fluids are a combination of major gas and minor
condensate derived from a mixture of various source rocks but mainly from the
Cretaceous Verrill Canyon (Figures 3e-ib, 3e-ic, 3c-iib, and 3c-ii-c); and (b) the
fluid may have an API of 69.7. On the other hand, the characterization of
reservoir fluids from the shelf-break late Jurassic reservoir (number 61383)
indicates that although the reservoir fluid may have an API of 51.5, but more
than 90% of hydrocarbon components are dry gas (methane) methane at the
reservoir temperature and pressure. The methane and liquid hydrocarbons in
the reservoir are derived from the Misaine and Jurassic Verrill Canyon source

rocks (Figures 3e-iiia, 3e-iiib, and 3e-iiic).
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A documentation of hydrocarbon migration vectors through the geological ages
clearly indicate that most of the reservoir hydrocarbons have been
continuously leaking on the surface since 90 Ma (Figures 3f-i, 3f-ii, 3f-iii, 3f-iv,
and 3f-v). This situation has persisted throughout the geological time periods
from 90 Ma to the present day. In comparison to the seismic line NOVASPAN
1600, the vertical hydrocarbon leakage from the seismic line 88-1a is much

less although both lines have similar lithology and petroleum system elements.

Hydrocarbon generation from three major source rocks (late Triassic, Jurassic
Verrill Canyon, and Cretaceous Verrill Canyon) illustrated that these source
rocks have generated 4.0 to 9.5, 1.6 to 5.2, and 1.4 to 2.2 metric tons of
hydrocarbons per sq. km, respectively along the seismic line 1600 from west to
east (Figure 3g-i; Figure 3g-ii; Figure 3g-iii). The mass balance hydrocarbons in
all reservoirs suggest that methane from the late Triassic and Jurassic Verrill
Canyon source rocks would be the main contributors for all reservoir
hydrocarbons (Figure 3h-i). The mass balance of source rock input and
reservoir accumulations illustrate: (a) total hydrocarbon generated and expelled
from the source rocks through geological time and accumulated in various
reservoirs (Figure 3h-ii); (b) complete generation balance, amount of convertible
kerogen, and the amount of liquid and vapour accumulated in various
reservoirs through geological time (Figure 3h-iii); (c) timing of primary or
secondary cracking and the amount of liquid and vapour accumulated in
various reservoirs through geological time (Figure 3h-iv); and (d) petroleum
system events chart with histograms showing the timing of total generated and

total expelled hydrocarbons (Figure 3h-v).

4. PETROLEUM SYSTEM MASS BALANCE CALCULATIONS

The comparative mass balance of hydrocarbon generated from various source
rocks and accumulated (in Metric Tons) in various reservoirs for seismic lines

NOVASPAN 1400 and FGP 88-1a established that (Figure 4a): (a) The
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hydrocarbon generation from various source rocks and accumulated in various
reservoirs in line 88-1a indicated that the reservoirs in Line 88-1a contain
almost 10 times more hydrocarbons than the seismic line 1400; (b) In line 88-
la, the Jurassic and Cretaceous Verrill Canyon source rocks have generated
the highest amount of hydrocarbons, while in seismic line NOVASPAN 1400,
the early Jurassic, Misaine (Callovian), and Jurassic Verrill Canyon source
rocks contributed maximum; and (c) the main HC accumulation in line 88-1a
is within the Early Cretaceous and late Jurassic reservoirs while the reservoir
accumulation in seismic line 1400 mainly concentrated in the late Jurassic
reservoir. On the other hand, in seismic line NOVASPAN 1600, the Cretaceous
Verrill Canyon source rock generated the highest amount of HCs while all late
Triassic, Late Jurassic and Early Cretaceous reservoirs accumulated

hydrocarbons but in lower reservoir saturations (Figure 4Db).

The overall comparative mass balance of hydrocarbons derived from 2D
petroleum system modelling for all three seismic lines (NOVASPAN 1400, FGP
88-1a, NOVASPAN 1600) established that (Figure 4c): (a) all three lines have
major hydrocarbon loss from the reservoirs; (b) line 88-1a has the highest
amount of hydrocarbons generated, expelled, and accumulated; and (c)
comparatively, lines 1400 and 1600 have at least five times less accumulated

hydrocarbons in various reservoirs compared to line 88-1a.

5. CONCLUSIONS

The final interpretation of the thermal properties and hydrocarbon
accumulation potential of three seismic lines (NOVASPAN 1400, FGP 88-1a,
and NOVASPAN 1600) have been evaluated in the Phase II study of the 2D
Petroleum System Modelling using the 2008 measured heat flow data along all
three seismic lines. The current Phase Il research established the following

conclusions:
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5.1. Seismic Line NOVASPAN 1400

The modelled (used transient heat flow since the rifting) and measured
heat flow values suggest that with the exception of two heat flow values
(heat flow lines 110 and 111), all measured values are closely correlated.
These two heat flow values are situated on top of the salt diapirs. This
may indicate that (a) either the seismic interpretation on the outline of
the salt diapir is not correct or (b) the calibration with the problem with

the basement heat for any 2D seismic line,

The heat flow values on top of the salt diapirs indicate that they are
comparatively hotter than the heat flow values on the flanks (mini-
basins) of the salt. However, the amount of heat flow variations depend
on the thickness of individual salt structures and proximity of the salt

diapirs to the sediment water interface locations,

Because of lower heat flow trends (based on newly measured data) of this
seismic line, all conceptual reservoirs (late Jurassic and early
Cretaceous, and Paleocene) in the slope contain more than 50% oil (C15+
and C6-C14 hydrocarbons) compared to earlier report (Mukhopadhyay,
2007). The liquid hydrocarbons (oil and condensates) are mostly
associated with dry and wet gas (C1 and C2-C5 hydrocarbons).

The Mass Balance of hydrocarbons between the source rock generation,
expulsion, and reservoir accumulation indicate that the (a) majority of
the hydrocarbons show a migration loss due to seal instability; (b)
Jurassic Verrill Canyon and Misaine source rocks are the main

contributors for the accumulated hydrocarbons in various reservoirs.
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5.2. Seismic Line FGP 88-1a

Using the transient heat flow trends, the modelled and measured heat
flow values have been calibrated. With the exception of three heat flow
values (heat flow lines 206, 207, and 208), all measured flow values are
closely calibrated. These three heat flow values are connected to the top
of the diapiric salt. This anomaly between the measured and modelled
heat flow could be caused by (a) an outline of the salt in the upper part of
the section may not have been correctly drawn during the seismic
interpretations, or (b) problems in attaining a well-defined basement heat
flow along the 2-D seismic section. Similar to seismic line NOVASPAN
1400, both the temperature and maturity values on top of the salt
diapirs are higher compared to the flank of the salt. However, the
variation in heat flow values depends on the thickness of the salt diapirs
and nearness to the surface,

Because the revised model is calibrated with lower heat trends, both the
Late Jurassic and Early Cretaceous conceptual reservoirs in the slope
contain some additional liquid hydrocarbons (C15+ - oil and C6-C14 —
condensate and light oil) within various reservoirs especially within
Tertiary and Upper Cretaceous sections. In general, all early Cretaceous
and late Jurassic reservoirs usually contain more than 75% methane
and wet gas (C2-C5 hydrocarbons),

Although the late Triassic conceptual reservoir contains mainly dry gas
(methane), the reservoir temperature and pressure is much lower
compared to our Phase I report (Mukhopadhyay, 2008). This could be
useful for exploring the ultra-deep water reservoirs (if any) along this
line. Moreover, lower heat flow within this area will also give an
opportunity to drill the early Cretaceous and late Jurassic plays that
could contain partially liquid hydrocarbons,

Based on the composite mass balance of hydrocarbons generated and

expelled from four major source rocks and accumulation within various
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reservoirs suggest that even though more than 50% of the migrated
hydrocarbons have been lost during the transit from reservoir and seal
leakages, this seismic line has accumulated the highest amount of
reservoir fluids (5 times more than seismic line NOVASPAN 1400 and
NOVASPAN 1600).

Eighty percent of the reservoir hydrocarbons in this line was methane
and wet gas. The Jurassic and Cretaceous Verrill Canyon source rocks
have generated the highest amount of hydrocarbons although the early
Cretaceous and late Jurassic reservoirs have accumulated the highest

amount of reservoir hydrocarbons

5.3. Seismic Line NOVASPAN 1600

The modelled and measured heat flow values have been calibrated as
closely as possible thus changing the transient heat flow trends. With the
exception of one value (heat flow line 313), all measured flow values are
closely fitting one other. However, this line needs much more measured
heat flow data to achieve a better correlation between the measured and
modelled heat flow values. Higher heat flow, temperature, and maturity
could be documented on top of various salt diapirs. This feature is quite
persistent similar to the other seismic lines. However, the variations in
heat flow values depend on the thickness of the salt diapir and proximity

to the surface

Because the revised model is calibrated with lower heat trends, both the
late Jurassic and early Cretaceous reservoirs in the slope contain a
mixture of methane (>75%) and 25% condensate/light oil type of

hydrocarbons

Similar to line NOVASPAN 1400, the majority of the hydrocarbons

expelled from four different source rocks from the late Triassic to early
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Cretaceous reveal a major loss of reservoir hydrocarbons in various
geological time periods from a migration loss and leakage in seal rock.
This type of hydrocarbon leakage is quite vigorous in the early
Cretaceous and younger reservoirs; (b) Jurassic and Cretaceous Verrill
Canyon and source rocks are the main contributors of the accumulated

hydrocarbons in both Jurassic and Cretaceous reservoirs.
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Study Area: Seismic Lines 89-11 (line 2), 1400, 1600 and 88-1A
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Crustal Structure: Line 2
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2008 Heat Flow Survey Figure A-3
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Seismic Interpretation: Line 1400 Figure A-4a

« Large vertical salt diapirs
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Line 88-1A (bottom) & Seafloor Heat Flow Comparison
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Seismic Interpretation: Line 1600 Figure A-4d
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Figure A-5a
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Seismic Interpretation: Line 1400 Figure 1a

« Large vertical salt diapirs
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Depth [m]

Line 1400 Final: Petrobuilder Horizon Assignment
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Line Novaspan1400: Assigned Heat Flow Trends for the entire seismic line

Figure 1b-ii
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Model Lithology Distribution: Line 1400
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Figure 1c-i
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Line 1400 Final: Modelled heat flow values on the entire seismic section
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Line 1400 Final: Modelled Heat Flow values on the entire seismic section
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Line Novaspan 1400 after simulation : Calibration of modelled and measured
heat flow values on top of selected measured heat flow lines

Figure 1c-iv
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Line Novaspan 1400 after simulation : Calibration of modelled and measured
heat flow values on top of selected measured heat flow lines Figure 1c-v
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Line Novaspan 1400 after simulation : Calibration of modelled and measured

heat flow values on top of selected measured heat flow lines
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Seafloor Heat Flow: Measured vs. Modelled (Line 1400)
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Line 1400: Temperature along the 2-D seismic section
Figure 1c-viii
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Line 1400: Maturity along the 2-D seismic section : :
Figure 1c-Ix

—+ Moheida P-15_modified Flehfddiftebnadied 19 modifed

IZII ZSEIII:ID SDEIII:ID T-"SI:IIEII:I 1EII:I::IDI:I 125DDD 1SDDDD 1?5I:II:ID ZDEI::IEID
0 I
Immature (D.EE'D.EE) ature (&25{'.55)
1000 Immature (0.25-0.55) Immature (0.25-0.55)
Early Gil (0.55-0.
2000 r Ol 2 Immature (0. 25-0,55) +
3000 Late Oil {1.0-1.3) Immature (0.25-0.55) Immature (0. 25-0.55)
40003 Main Gil (0.7-1.0) 25-0,55) Immature (0.25-0.55)
e Dry Gas (29) Immature (0,25-0, 55) Immature (——————
Middle_Late Miod
5000
Immature (0.25-0.55) Early-Middle Mio
Early Oil (0.55-0.7) Immature (0.
'y andiok_Dawsi
Early Qil (0.55
Wet G 1.3-2]
i etGas (1.5.2) Main Ol (0. 7-1
Lat= Ol (LO-1.3) Late Oil (1.0-1.
rohican
ér .
3 Sweeney&Burnham{1990) e _i_iEurvdlce
E _EASY%RG [%Rﬂ] ”_7_:/ .1—7_/ e i A e = i
3 e — P e E
E Il Immature (0.25-0.55) A mature =4 = %: :%: i_”:”++++++++++++++++++++++++ B
10000 -Ear_l\,-'QﬂI:D.ES{I.?} B o N R A | Overmature >4++++++’:% - g e ++++++++++++++++I::::¥
I Mzin il (0.7-1.0) R e o o il i e +++tt+r+++
1 |Late ol (1.0-1.3) R R R R R e e ++++++++++++++DFYGBS(2'4 AR
3 R ek ko Tk k ko o T R AR I R ety S A +++ 4Basement
11000 Vet Gas (1.3-2) B L T A Ay ++++++++++++++++++++++++++++++++++++
3 Dry Gas (2-4) A s s kst s Ak e Ay
¥ Overmature =4 R I R R e R R o o o T e o e e R A N T
1 IR R R R R R R R R R R L e T s
3 b b ko o o e o R T ok b ok o o T o o e o e A e e T e T L
12000 e N WA R "
' 50 100 150 200 250 300 350 400 450 500 550 600 650 700
25000 12500 0 25000 meker 3IES

[ = —— - ————

2D View 30 View



Final Report Year 3 OETR Project Appendix B

Line 1400: Hydrocarbon zones along the 2-D seismic section
Figure 1c-x

—~+Moheida P-15_modifisd FlehficlifeHnaF 19_modifted

DI 25I:|II:ID SDEIIEII:I ?SEIII:II:I 1I:II:I::II:II:I 125::IDI:I - IEI:I::IEIEI 1?SDI:IEI ZDD::IEID

immature
el

- immature
immature -
immaure
Middle_Lake Mio
=000
NINTIE NG Early-Middle Mio
3 - immature
= 6000 A - Wvandok_Dhawst
— i I
= + ik
=
[='%
'
O 7000
A
S000
Maohican
9000 AFurydice
o :
& ++++++++++++-|J|:|\rermatl_|r
10000 Zone_Alma_JvC + +4 4+ DVEFITIEtLII'E + + ++++++++++++++
; +
Ilimmature + + 4Bassment
110004 il +
B gas B b ko o o o o o o o o T A L e e kot ok o ot e e A R A A A T A
overmature R B E e b e e T e e e o i o i o e A e A A T A SR A A A A A A A A A
B b ko o o o o o o o o T A L e e kot ok o ot e e A R A A A T A
12000 e e T T T T S T S AT TS T e ST e s e ds S S et
E PRI PN
T T T T T 1 T T T 1 1 1 1 T
0 =] 100 150 200 250 300 350 400 450 Sao 250 &0 E50 Foa
25000 12500 0 25000 meter G IES

[ - ————

2D View 3D View



Final Report Year 3 OETR Project Appendix B

Line 1400: Pore Pressure along the 2-D seismic secticll_nIgure Loxi
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Figure 1d-i
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Line Novaspan 1400 after simulation: Hydrocarbon saturation of various reservoirs

Figure 1d-ii
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Line 1400: Late Jurassic Reservoir 41834: Percentages of reservoir hydrocarbons
Figure le-ia
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Source Rock
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Line 1400: Upper Jurassic Reservoir (Accumulation 41834): Source Rock

Fingerprinting and mass balance Figure le-id
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Line 1400: Upper Jurassic Reservoir (Accumulation 41834): P-T diagram

Figure le-ie

P [MPa] Molar Fraction
40
Liquid Park
100%
o,
= | 75%
0%
29%
30—
e
25 —
20 —
15 —

[ I
1] 75 150 225 300 375 4510 025 a0
T [Celsius]



EARLY CRETACEOUS RESERVOIR

FINGERPRINTING: LINE NOVASPAN
1400




Final Report Year 3 OETR Project Appendix B

Line 1400: Early Cretaceous Reservoir 41869: Percentages of reservoir
hydrocarbons Figure le-iia
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Line 1400: Early Cretaceous Reservoir 41869: Source Rock Fingerprinting

Figure le-iib
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Line Novaspan1400: Focussing on early Cretaceous Reservoir showing
the distributions of HC saturation (Accumulation 41889)

Figure le-iiia
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Line Novaspan1400: Focussing on early Cretaceous Reservoir showing
the hydrocarbon distribution & source rock fingerprinting
(Accumulation 41889)

Figure le-iiic
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Line Novaspan1400: Focussing on early Cretaceous Reservoir showing
the distributions of HC pressure-temperature digram

(Accumulation 41889) Figure le-iiid
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Line Novaspan1400: Focussing on Paleocene Reservoir with
hydrocarbon saturation (Accumulation 42010)
Figure le-iva
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Line Novaspan1400: Focussing on Paleocene Reservoir with source rock
fingerprinting and showing the hydrocarbon component distributions
(Accumulation 42010)

Figure le-ivc
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Line Novaspan1400: Focussing on Paleocene Reservoir with pressure-
temperature diagram of the reservoir hydrocarbons (Accumulation

42010)
Figure le-ivd
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Line 1400: Mass Balance of Reservoir Hydrocarbons

Info: Only percentages are rounded. Values < 0.005% are displayed as 0.00%!
Violumes /masses calculated for a width of 1 km
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The curve showing cumulative total

generated, total expelled, and total Figure 1f-ii
accumulated in geological time since 170

Ma — Line 1400
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Figure 1f-ii
Line 1400: Timing of total HC generated and total expelled
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Conclusion: Seismic Line Nova Span 1400

Using the transient heat flow trends, the modelled and measured heat
flow values have been calibrated . With the exception of two heat flow
values (heat flow lines 110 and 111), all measured flow values are closely
calibrated. These two heat flow values are connected close to the
diapiric salt. Therefore, it is be possible that seismic interpretation on
the outline of the salt (in upper section) has to be modified to calibrate
the measured values

Because the revised model is calibrated with lower heat trends, both
Late Jurassic and Early Cretaceous conceptual reservoirs in the slope
contain more oil (C15+ and condensates), which is associated with
methane and wet gas. The Paleocene conceptual reservoir has mainly oil
(C15+ and C6-C14 components)

The heat flow values on top of the salt diapir is much hotter compared to
the flank of the salt. However, the variation in heat flow values depends
on the thickness of the salt diapir and nearness to the surface
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Line 88-1A: General Stratigraphy with Horizons
as assigned within PetroBuilder Figure 2a-i
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Line 88-1A: General Stratigraphy with Horizons

and petroleum system elements as assigned Figure 2a-iii
within PetroBuilder
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Model Lithology Distribution: Line 88-1A

Appendix B

Figure 2a-iv
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Line 88-1A — Morphology of diapiric and allochthonous salt
Figure 2a-v
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Figure 2a-vi

Heat flow trend used for line 88-1A (final): before modelling
simulation in PetroBuilder
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Heat flow trend for line 88-1A (final): Modelled heat values on each
heat flow measured points based on calibration of measured heat  Figure 2b-ii
flow values (Shelf to Mid Section of the Seismic Line 88-1A)
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Heat flow trend for line 88-1A (final): modelled heat values
on each heat flow points based on calibration of Figure 2b-ii
measured values (Mid Section to end of the section in the slope)
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Seafloor Heat Flow: Measured vs. Modelled (Line 88-1A)
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Line 88-1A (final): modelled temperature profile along the section
(depth-wise and length-wise) Figure 2c-i
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Line 88-1A: Modelled Maturity Calibration based on

Sweeney and Burnham (1990) Figure 2c-i
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Line 88-1A: Modelled Pore Pressure Calibration

Appendix B

Figure 2c-iii
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Line 88-1A (final): Modelled Hydrocarbon Zones

Figure 2c-iv
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Transformation Ratio: Line 88-1a Figure 2c-v

[m] 0Ma
0 10000 20000 30000 40000 SOOOO 600D OODD  8ODDD 90000 100000 110000 120000 130000 140000 150000 160000 170000 180000 150000

TR_ALL [%]

—_
E j .

= : J OCene
£

[=}

[

Il

yvandok_Dawsi

; Eatly Mississaug.
y I E Early_Cretaceot
- Cretecenus_ert

Top_Jurassic

f = ﬂ\“ﬁ! , : v

Mohican

Late_Tr_Synrift_

Eiasernent

T T T T T T T T T T T T T T T T T T T T B =T T T T T T
0 10 20 a0 40 a0 a0 70 il 90 100 110 1200 130 140 1500 1600 170 180 190 200 2I10Z2(B30 240250 260 270 280 290 300 310
100005000 0 10000 20000 30000 40000 meker ﬁ lrES

HEHEEH




Final Report Year 3

OETR Project

Appendix B

Line 88-1A: ID Extraction of Shubenacadie H-100 well: Vitrinite Reflectance profile
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Line 88-1A: ID Extraction of Shubenacadie H-100 well: temperature vs. depth profile

Figure 2d-iii

Temperature, 24-aug-09_Line88-1_newLength_1715PMatShubenacadie_H100 {projected 36000.0m)
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Line 88-1A: ID Extraction of Shubenacadie H-100 well: pressure vs. depth profile

Figure 2d-iv

Pressure, 24-aug-09_Line88-1_newlLength_1715PMatShubenacadie_H100 (projected 36000.0m)
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Onset of Expulsion: Line 88-1a Figure 2e
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Line 88-1A: Late Triassic Reservoir 27339 — ultradeep section

beyond salt diapirs _ _
Figure 2f-i

FkEE 1 0rolFset —Hrz19_offfebfzen_offskthfzzl_offset 0 Ma

0 10000 20000 30000 0000 70000 80000 90000 100000 110000 120000 130000 140000 150000 160000 170000 180000 190000

40000 50000

ae88-1_newlength_17150
1

et olaum

Eocens

Depth [m]

wiyandot_Daiwst

Actumu|ah0n 27429 Accumulation 27439 e ——
P“ =3 Accumulation 27448 Accumulation 27

T iEatly_CretaceoL

- ﬁ
cv:uulatlc:n 27384 .ﬁ.cv:umulatlnn 7 5 = [%

Early Mississaug.

Creteceous_Yerr

e E

s i—-":"*“"‘
Py

Top_Jurassic

i 1
11000

10000

Easement

[}

0 0 30 40 50 60 Y0 S0 90 100 110 120 130 140 150 160 170 180 190 200 Z10E22@30 24(B50 Ze0 270 250290 300 310
10000 0 10000 20000 30000 40000 50000 meker

S GIES




Final Report Year 3

OETR Project

Appendix B

Line 88-1A: Ultradeep section beyond salt diapirs
pore pressure distribution surrounding the Late Triassic Reservoir 27339
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Line 88-1A: Ultradeep section beyond salt diapirs
temperature distribution surrounding the Late Triassic Reservoir 27339
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Line 88-1A: Late Triassic Reservoir 27339 — ultradeep section

beyond salt diapirs: source rock fingerprinting
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Line 88-1A: Late Triassic Reservoir 27339 — ultradeep section
beyond salt diapirs: source rock fingerprinting : methane from
Late Triassic lacustrine source rock Figure 2f-v
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Line 88-1A: Ultradeep section beyond salt diapirs — 1D Extraction
pore pressure versus depth on the Late Triassic Reservoir 27339

OETR Project
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Line 88-1A: Ultradeep section beyond salt diapirs — 1D Extraction
Temperature versus depth on the Late Triassic Reservoir 27339

OETR Project
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Line 88-1A: Ultradeep section beyond salt diapirs — 1D Extraction
Temperature versus depth on the Late Triassic Reservoir 27339
Figure 2f-viii
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Line 88-1A: Target Late Triassic target reservoir 27340: 99.7% coming
from Late Triassic source rock

Figure 2f-ix
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Appendix B

Figure 2f-x

Line 88-1A: Target Late Triassic target reservoir 27340: It is in a liquid
phase in the reservoir
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Line 88-1A: Target Late Triassic target reservoir 27340 (4051) at
144 Ma with hydrocarbon migration vectors showing no leakage Figure 2f-xi
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Line 88-1A: Target Late Triassic target reservoir 27340 (7867) at Figure 2f-xii

112 Ma with Hydrocarbon migration vectors showing leakage from
the Jurassic and Cretaceous reservoirs
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Line 88-1A: Target Late Triassic target reservoir 27340 (10648) at  Figure 2f-xiii
90 Ma with Hydrocarbon migration vectors showing leakage from
late Jurassic and early Cretaceous reservoirs
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Line 88-1A: Target Late Triassic target reservoir 27340 (16156) at 65 Ma
with Hydrocarbon migration vectors showing leakage from late Jurassic
and early Cretaceous reservoirs
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Line 88-1A: Target Late Triassic target reservoir 27340 (22226) at
23.8 Ma with Hydrocarbon migration vectors showing leakage
from late Jurassic and early Cretaceous reservoirs
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Line 88-1A: Target Late Triassic target reservoir 27340 at the present
time with Hydrocarbon migration vectors showing leakage from late
Jurassic, Cretaceous, and Tertiary reservoirs Figure 2f-xvi
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LATE JURASSIC RESERVOIR
SATURATIONS: LINE 88-1A
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Line 88-1A: Late Jurassic target reservoir 27394: 36% of liquid HC is of
C6-C14 & C15+ and comes from Jurassic Verrill Canyon Source Rock
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Figure 2g-ii
Line 88-1A: Late Jurassic target reservoir 27394: Source Rock
Fingerprinting of Late Jurassic reservoir 27394 to various sources
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Line 88-1A: Compositional mass balance and source rock _ _
fingerprinting Late Jurassic Reservoir (Accumulation 27398) Figure 2g-1v
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Line 88-1A: Bubble Point Curve of Late Jurassic

Reservoir (Accumulation 27398)
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EARLY CRETACEOUS RESERVOIR
SECTIONS: LINE 88-1A
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Early Cretaceous Reservoir (Accumulation 27448)
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Figure 2h-iii
Line 88-1A: Early Cretaceous Reservoir Bubble Point Curve
(Accumulation 27448)
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MASS BALANCE CALCULATION:
LINE 88-1A
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Info: Only percentages are rounded. Values < 0.005% are displayed as 0.00%:!
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Figure 2j-i

Complete Mass Balance of HC Volumes present in various reservoirs in percentages
Line 88-1A
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Table General | Petroleum Systems | Graph
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Seismic Line 88-1A: Conclusion

Using the transient heat flow trends, the modelled and measured heat
flow values have been calibrated . With the exception of three heat flow
values (heat flow lines 206, 207, and 208), all measured flow values are
closely calibrated. These three heat flow values are connected close to
the diapiric salt. Therefore, it is obvious that outline of the salt in the
upper part of the section has to be modified to calibrate the measured
values

Because the revised model is calibrated with lower heat trends, both
Late Jurassic and Early Cretaceous conceptual reservoirs in the slope
contain more oil (C15+ and condensates), which is associated with
methane and wet gas

Although the late Triassic conceptual reservoir contain mainly dry gas
(methane), the reservoir temperature and pressure is much lower
compared to our Phase | model

The heat flow values on top of the salt diapir is much hotter compared to
the flank of the salt. However, the variation in heat flow values depends
on the thickness of the salt diapir and nearness to the surface
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Seismic Interpretation: Line 1600
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Line NOVASPAN 1600: PetroBuilder Assignment of Horizons with lithology patterns
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Line NOVASPAN 1600: PetroBuilder Assignment of Horizons with lithology patterns and
facies polygons
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Line NOVASPAN 1600: Legends for PetroBuilder Assignment of Horizons
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Line NOVASPAN 1600: Heat Flow Trends used for the calibration
Of measured heat flow values in the following slides
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Figure 3c-i
Line NOVASPAN 1600: General Stratigraphy without overlays after simulation
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Line NOVASPAN 1600: Modelled heat flow trends within sediment-water interface areas
Figure 3c-ii
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Line NOVASPAN 1600: modelled heat flow values on top of the measured heat flow data points
and associated areas on top of the salt diapir Figure 3c-ii
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Figure 3c-iv

Line NOVASPAN 1600: calibration of measured and calculated heat flow values
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Seafloor Heat Flow: Measured vs. Modelled (Line 1600)
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Line NOVASPAN 1600: lllustrates the modelled temperatures and three wells in the shelf and

the temperature surrounding the heat flow lines. . :
Figure 3c-vi
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Line 1600: Shows the maturation calibration
based on Sweeney and Burnham (1990) . Figure 3c-vii
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Line 1600: Present day pore pressure distributions in various areas
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Line NOVASPAN 1600: Shows the modelled hydrocarbon transformations percentages from
five source rocks assigned for the line Figure 3c-ix
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Line NOVASPAN 1600: 1-D Extraction at Como P-21 well — Maturity and Temperature Plot
suggesting Mohican Formation is currently at >2% Ro

Maturity, 25-Aug09-Line_Noval1600_1035PM_mgr (dist=27386.2m)
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Pressure, 25-Aug09-Line_Nova1600 1035PKM_mgr {dist=27637.5m)

Line NOVASPAN 1600:

Pressure [MPa] 1-D Extraction at Como P-21 well
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Line 1600: Onset of Hydrocarbon Expulsion
Figure 3d-i
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Line 1600 — HC saturation in various source rocks and associated oil and gas
reservoir accumulation. Note that the major accumulation in Early Cretaceous
Researvoir 61486 barely missed the Como P21 well
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Line NOVASPAN 1600: Reservoir Accumulation in various
Reservoirs and focussing on Early Cretaceous Researvoir-Shelf 67486
Figure 3e-ia
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Figure 3e-ib

Line NOVASPAN 1600: Early Cretaceous Researvoir-Shelf 67486 (close to Como P-21 well)
Source rock fingerprinting suggests the reservoir HCs are mainly composed of condensate
& methane derived from the Cretaceous Verrill Canyon Source Rock
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P [MPa] Molar Fraction

Liquid Part
100%:

Line NOVASPAN 1600:
Early Cretaceous Researvoir
Shelf 61486 with HC Components
and P-T diagram

75%

50%

25%

%o

Figure 3e-ic

I I I T T T T T T T
-50 0 50 100 150 200 250 300 350 400
T [Celsius]

Molar Fractions 43,6873 MPa 90,6635 Celsius

Liquid
0.0% Methane
0.0% C2-C5
0.0% Co-C14
0.0% C15+
0.0% PK_Ce-C14
0.0% PK_C15+
8.1% Methane_Trias
0.0% C2-C5_Trias
0.0% Co-C14_Trias
0.0% C15+_Trias
©.3% Methane_IVC
0.7% C2-C5_C
3.4% Co-C14_IVC
0.6% C15+_IVC
0.9% Methane_Misaine
0.1% C2-C5_Misaine
0.4% C6-C14_Misaine
0.1% C15+_Misaine
56.3% Methane_CVC
5.3% C2-C5_CVC
13.9% Co6-C14 CVC
0.9% C154+_CVC
1.7% Methane_Mohican
0.6% C2-C5_Mohican
0.2% C&-C14 Mohican
0.6% C15+_Mohican




Final Report Year 3 OETR Project Appendix B

Line NOVASPAN 1600:Early Cretaceous Reservoir: Accumulation 61540
with APl and HC Component Summary
Figure
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Line NOVASPAN 1600: Early Cretaceous Reservoir Accumulation 61540.
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Line NOVASPAN 1600:
Early Cretaceous Reservoir
Accumulation 61540
with mixed HC components and
P-T Diagram of the components
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Line NOVASPAN 1600: Late Jurassic Reservoir 61383 with percentages various
HC components showing hydrocarbons within the reservoir is amostly methane

Figure 3e-iiia

[mn]

25000 S0000 FE000 125000 175000

1000
2000
3000
4000
S000
G000

Depth [m]

go00
Q000
10000

1i00o
Scotian_BASEMA

12000

e e

13000

100 150 200 300 350 400 450 500 550 G000 G50 700 750

25000 12500 ] 25000 ‘:j _lll E S

- —




OETR Project Appendix B

Final Report Year 3

Line NOVASPAN 1600: Late Jurassic Reservoir 61383 with percentages various
HC components and source rock fingerprinting Figure 3e-iiib
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Line NOVASPAN 1600: Late Jurassic Reservoir 61383 with
percentages various HC components showing hydrocarbons
within the reservoir is mainly methane derived from both JVC
and Misaine source rocks
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Line 1600- Liquid HC Migration Patterns and Liquid HC Loss 145 Ma
Figure 3f-i
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Line 1600- Saturation of Liquids in 112 Ma _ .
Figure 3f-ii
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Line 1600- Saturation of Liquids in 90 Ma

Figure 3f-iii
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Line 1600- Saturation of Liquids in 65 Ma
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Figure 3f-v

Line 1600- Saturation of Liquids in 30 Ma
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Line 1600- Saturation of Liquids in 5 Ma Figure 3f-vi
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Figure 3f-vii

Line 1600- Saturation of Liquids with liquid vectors n present time
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Line 1600 — Amount of hydrocarbon generation
along the Late Triassic source Rock Figure 3g-i
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Line 1600: Amount of hydrocarbon generation along the

Jurassic Verrill Canyon (JVC) Source Rock Figure 3g-il
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Line 1600: Amount of hydrocarbon generation along the
Cretaceous Verrill Canyon (CVC) Source rock Figure 3g-iii
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Line 1600: Overall mass balance of reservoir hydrocarbons

nfo: Only percentages are rounded, Values < 0.005%: are displayed as 0.00%!

Volumes /masses calculated for a width of 1 km

Info: Only percentages are rounded. Values < 0.005%: are displayed as 0.00%:!
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Line 1600: Total HC generated, expelled from
various source rocks and accumulated in

reservolirs
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Line 1600: Correlation of generation balance,
convertible kerogen, total liquid and total gas Figure 3hii
accumulated
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Line 1600- Amount of HCs generated from

primary and secondary cracking and the

amount of liquid and vapour accumulated
within various reservoirs

Figure 3h-iv
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Line 1600: Petroleum Systems Events Chart Foure sh-v
of total generated and expelled HCs
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NovaSpan 1600: Conclusion

e The modelled and measured heat flow values have been
calibrated as closely as possible chaning the transient heat
flow trends. With the exception of one value (heat flow line
313), all measured flow values are well calibrated.

Because the revised model is calibrated with lower heat
trends, both Late Jurassic and Early Cretaceous Reservoir in
the slope contain a mixture of methane and condenstae
type of hydrocarbons

e The heat flow values on top of the salt diapir is much hotter
compared to the flank of the salt. However, the variation in
heat flow values depends on the thickness of the salt diapir
and nearness to the surface
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Comparative Mass Balance Calculations
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Figure 4a
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Mass Balance of Hydrocarbons: Comparison between
Seismic Line 88-1A and 1400
Seismic | Total HCs Source Rock Names
Line | Generated
from SRs Seismic [Total HCs Reservoir
1400 0.7 Paleocene_Reservoir Line Accumulated [Name
5.9 Middle_Paleocene in Reservoirs
106.5 Cretaceous_VC 1400 6.6] Paleocene_Reservoir
598.3 Jurassic_VerrillCanyon 1.1f Logan_Canyon
367.6 Late_Jurassic 76.3| Early Cretaceous Reservoir
629.8 Misaine_1 287.3] Upper_lJurassic_Reservoir
34.9 Mohican SR
439.1 E_Jurassic_Lacustrine_SR



Final Report Year 3 OETR Project Appendix B

Seismic | Total HCs Source Rock Names Figure 4b
Line Generated
from SRs
1600 0.0 Middle_Late Paleocene
2052.0 Logan_Canyon_SR
3084.8 Creteceous_Verrill_ Canyon
2343.8 Jurassic_Verrill Canyon
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Mass Balance of Hydrocarbons: Line 1600
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HC

Accumulated

in Reservoirs

Appendix B

Figure 4c

88-1A 21210.6 3515.93 17694.7 3707.74 13986.9
1400 2182.8 1225.8 956.9 371.5 585.4
1600 10012.4 1658.3 8354.1 607.6 7746.5




10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Final Report Year 3 OETR Project Appendix C

2D Waveform Tomography Applied to Long Streamer MCS

Data from the Scotian Slope

Matthias Delescluse!”, Mladen R. Nedimovic? and Keith E. Louden®

'Department of Oceanography, Dalhousie University, Halifax, NS, Canada
?Department of Earth Sciences, Dalhousie University, Halifax, NS, Canada

“Corresponding author. E-mail: mdelescluse@dal.ca

Detailed velocity models of the earth subsurface can be obtained through
waveform tomography. The accuracy of the long-wavelength component of such velocity
models, which is the background velocity field, is particularly sensitive to modeling low-
frequency refracted waves that have long paths through target structures. Thus field
examples primarily have focused on the analysis of long-offset wide-angle datasets
collected using autonomous receivers, in which refractions arrive at significantly earlier
times than reflections. Modern marine acquisition with long streamers now offers the
ability to record, both in shallow and deep water, such far offset refracted waves with
high spatial density and uniform source. We use 2D MCS data acquired with a 9-km-long
streamer over the Scotian Slope in water depths of ~1600 m. The refracted arrivals,
although mostly restricted to far offset receivers, provide sufficient information to
successfully invert for a high-resolution background velocity field. Using a frequency
domain acoustic code over frequencies from 8-24 Hz on two crossing profiles (45 and 30
km long), we detail how the limited refracted waves can constrain the velocity field

above the depth of the turning waves (~1.5 km below seafloor). Several important

C-1
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features are resolved by the waveform velocity model that are not present in the initial
travel-time model. In particular, at shallow depth a high velocity layer due to gas hydrates
is imaged even where a characteristic BSR is not visible. At greater depth, a strong
velocity increase of 300 km/s exists beneath a gently dipping reflector along which low-
velocity zones, possibly related to gas, are present. Velocity models are highly consistent
at the crossing point between the two profiles. The depth extent of the MCS waveform
tomography constrained by refractions could be extended by even longer streamers (e.g.

15 km) or by joint inversion with OBS data.

INTRODUCTION:

Applications of frequency domain 2D acoustic waveform tomography inversion
(Pratt and Worthington, 1990; Pratt, 1999) to field seismic data are a few and limited to
the two end members of seismic acquisition techniques: (1) long offset wide-angle
refraction experiments using individual land or ocean bottom stations (Dessa et al., 2004;
Operto et al., 2004; Ravaut et al., 2004; Operto et al., 2006; Bleibinhaus et al., 2007;
Bleibinhaus et al., 2009), and (2) high resolution, short streamer marine reflection
seismics (Hicks and Pratt, 2001; Shin and Min, 2006; Wang and Rao, 2009). The two
cases offer opposite advantages and drawbacks. In the “refraction” case, the validity of
the acoustic approximation is questionable, typically limiting the inversion to phase only
(Bleibinhaus et al., 2007); while good starting models obtained from traveltime
tomography and low frequencies offer excellent control on the velocity field (Brenders

and Pratt, 2007a). In the “reflection” case, small offsets and small-scale targets with
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simple structures ensure a good validity of the acoustic approximation (Barnes and
Charara, 2009; Virieux and Operto, 2009) and the high density of shots and receivers
allow very high resolution. However, the background velocity field is not well
constrained by reflection waveform tomography and a degree of structural interpretation
IS necessary to obtain a useful result (Hicks and Pratt, 2001, Wang and Rao, 2009).
Although fewer applications to real data have been attempted, reflection seismics is
widely used by industry and academic investigators and applicability of the waveform
inversion to these datasets should be more studied (a review of industry efforts in
applying waveform tomography to field data can be found in Williamson et al., 2010).

In this paper, we attempt 2D waveform tomography inversion in frequency
domain using a long streamer multichannel seismics (MCS) dataset, which represents an
intermediate situation between the two previously cited cases. An earlier attempt to
utilize full waveform tomography for long streamer data (Shipp and Singh, 2002) was
done in time-space domain but the huge computational cost associated with this method
required severe decimation of the input data thus limiting the results.

The 2D MCS data with 9 km long streamer acquired on the Scotian Slope (Figure
1) and used in this study include refracted waves arriving earlier than the seafloor
reflection and later than the direct wave (Figure 2). These waves constrain the
background velocity field above their turning depth, while the simple, slowly varying
sedimentary environment (Figure 1) minimizes the limitation with the acoustic
approximation. This configuration is then likely to combine the strengths of both
"reflection™ and "refraction™ cases of waveform inversion while limiting their drawbacks.
We first present the dataset and then describe the preconditioning and inversion strategy.

Finally, we discuss the results in terms of limitations of the waveform tomography
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method applied to MCS data, possible targets of MCS waveform tomography, and
additional information it can provide when compared to a prestack depth migration

image.

DATA PRECONDITIONING

Data and Geometry

SHOTS

We use two crossing sections of the Novaspan profiles (lines 1400 and 5300, see
Figure 1) acquired by lon-GXT in 2003. The streamer is composed of 360 receiver
groups with 25 m spacing. The shot spacing is 50 m. For the investigated 44 km-long
section of the strike Line 5300, we use 231 shots spaced every 150 m (every third shot)
and all receivers. For the crossing 29 km-long section of the dip Line 1400, we use 196
shots spaced every 100 m (every second shot) and all receivers. Although 94 m is the
ideal spacing to avoid aliasing for our lowest frequency available (8 Hz, and
Dsamp=Vmin/(2f)), Brenders and Pratt (2007a) have shown that the sampling theory
criterion may be too conservative (see Table 1 for a summary of the sampling of different
synthetic and real survey configurations). In practice, our shot domain decimation,
undertaken for computing reasons, does not seem to affect our results for the tested

frequencies (8 to 24Hz).
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Feathering of the streamer is limited to a maximum 10 degrees angle, but is
generally less. The nominal geometry implies a 170 m minimum offset for the first
receiver and consequently a 9145 m maximum offset for receiver 360. However, streamer
bending also occurs which shortens the effective maximum offset to an average of 8966
m. To fully take into account the effects of feathering and bending is equivalent to the
definition of 83,160 receivers positions for line 5300 (and 70,560 receivers positions for
line 1400) and would require 3D codes. Considering the resulting requirement for
computer memory and the fact that we need to approximate our geometry to a 2D straight
line, we choose to define fixed receivers positions with constant spacing, that will be re-
used by different shots. For each shot, only 360 fixed receivers will be active (see sketch
on Figure 2). Although the average maximum offset length is only shortened by 2%, this
IS a very sensitive parameter for both traveltime and waveform tomography and it is
crucial to take this shortening into account. In this respect, focusing on short sections of
profiles helps to avoid changes in the geometry approximation due to water currents
variations. In our case, an average 24.5 m spacing between receivers is always a good
approximation. Finally, for line 5300, the 83,160 independent receiver positions are

reduced to 1768 fixed positions (Figure 2).

Amplitudes

The average seafloor depth of the investigated profiles is ~1600 m, which means
that multiples are not a problem (Figure 1) because they arrive later than the turning
waves and therefore beneath the region where the velocity is constrained (Brenders and

Pratt, 2007c). Thus, no multiple attenuation is applied.
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Amplitude corrections, however, must be applied, since the observed data are
acquired with a point source, corresponding to a 3D geometrical spreading of the acoustic
energy, while the acoustic forward modeling code is 2D and assumes a line source with
cylindrical spreading. In the near offset domain and for horizontal layers, a simple
correction can be applied as a function of Vms(t)*t? (Wang and Rao, 2009), or more
simply just sqrt(t) (Hicks and Pratt, 2001). However, our case cannot be considered as a
near offset approximation. A simple solution (Ursin, 1990) is to apply an offset
dependent correction  ( Vims()*(*+X% Vims()2)** where x is the offset) after NMO
adjustment to normal incidence traveltime followed by reverse NMO. In previous large-
offset studies, refraction amplitudes are adjusted to the initial smooth forward model
(Brenders and Pratt, 2007b). For our dataset, however, this method would also destroy
the relative variation of the refraction amplitudes along the profile, which would result in

a loss of information.

STARTING MODEL

Seismic source

Once the raw data have been processed to correspond to the 2D acoustic code
approximation, the next step is to find a correct initial velocity field in which the modeled
first reflection and refraction waves arrive within half a cycle of the observed data at the
lowest frequency available (i.e. 8 Hz). If the half-wavelength criterion is not respected,
cycle skipping will occur and the waveform inversion will diverge. To obtain the initial

forward model, a source wavelet is necessary. Previous studies using frequency domain
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waveform tomography (Pratt, 1999) usually estimate the source wavelet by solving a
linear inverse problem progressively updating the source to fit the data from an initial
estimation. This approach is efficient when refraction arrivals are clearly separated from
the reflections. In our case, the reflectivity causes a problem. The initial model does not
include any reflector except a weak seafloor. Shallow sub-seafloor reflections from the
data cannot be correlated with the forward model, which invalidates the method. We
consider that the refraction events in our data are limited and not sufficiently correct in
terms of amplitude variations in the forward model. Consequently, we use a synthetic
source modeled for the 32 airguns, 4258 cu. in. array geometry used during the
acquisition (Figure 3). Our tests show that the modeled wavelet has practically the same
frequency spectrum as the data (see Figure 3B). We also know that there are no gun
malfunction or pressure variation during the acquisition, which yields a constant signal

strength from shot to shot.

NMO, depth migration and traveltime tomography starting velocity models

The two forward models computed using the velocity fields from NMO stack and
prestack depth migration fail to produce refracted arrival times within half a cycle of the
observed data. Both velocity models are similar and too slow (Figure 4a) and therefore
the modeled arrivals are too late (Figure 5a).

Starting with the depth migration velocity field, we next use traveltime
tomography to obtain a new velocity field (Figure 4b), modeling only the refracted
arrivals at far offset. We use the FAST code (Zelt and Barton, 1998), which has been

modified to account for direct waves arriving before the refracted arrivals. For this
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situation, virtual sources are placed at the seafloor to divide the problem in two parts and
bypass the direct paths in the water column (Canales et al., 2008). The resulting velocity
field now qualifies as a starting model for waveform tomography as the modeled arrivals
now respect the half cycle criterion (Figure 5b). The new starting model includes a
velocity increase relative to the initial model of 0-50 m/s in the top 1 km below the
seafloor and 50-150 m/s at depths (between 1 and 1.5 km below seafloor) where the

refracted rays turn.

INVERSION STRATEGY

Frequency domain inversion

We use the frequency domain waveform tomography approach of Pratt and
Worthington (1990) and Pratt (1999). This method is computationally efficient as the
data are manipulated in frequency domain and are utilized progressively from lower to
higher frequencies. This incremental frequency strategy also helps overcome the non-
linearity of the wavefield inversion. The frequency bandwith is limited by the lowest
frequency in the dataset (8 Hz) and also by the size of the forward model grid. The finite
difference forward model code needs 4 nodes per spatial wavelength for a 95% accuracy
(Brenders and Pratt, 2007b). For the inversion to run within a reasonable computing time
(i.e. <24 hours), we limit our velocity grid size to a 3020x333 dimension, which
corresponds to a 15 m spacing (45 km x 5 km). The lowest velocity being 1500 m/s, 4

nodes correspond to a 1500 m/s / 60 m = 25 Hz maximum frequency. Because structures
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are seen through different incident angles, one frequency illuminates a range of spatial
wavenumbers (Sirgue and Pratt, 2004), which means that a small number of frequencies
cover a continuous range of spatial wavenumbers. With a 9 km streamer, this “efficient
waveform tomography” strategy (Sirgue and Pratt, 2004, Brenders and Pratt, 2007a)
would result in the use of only 4 frequencies in our 8-25 Hz data. However, real data are
noisy and, although the lon-GXT dataset has a good signal to noise ratio, more
frequencies are necessary to create some overlap in the spatial wavenumber coverage and

avoid noise artifacts. In our case, 9 frequencies are used from 8 to 24 Hz with a 2 Hz step.

Reflectivity

In an effort to limit the weight of reflections in the inversion, we ignore the 160
first traces of each shot gather and only consider the 200 receivers from offsets of 4 to 9
km. The weight of near offset reflections is high in the inversion gradient, although only
poor velocity information exists. The high amplitudes of the near offset sea-bottom
reflection are also unlikely to be correctly modeled by the 2D acoustic code (Hicks and
Pratt, 2001). The limited frequency bandwidth of the inversion also does not result in a
physically meaningful reflectivity image. Even with a higher frequency inversion, the
interpretation of reflectivity-related velocity variations are doubtful because impedance
contrasts are not the result of variations in velocity alone. We therefore favor the long
wavelength, background component of the velocity model by limiting the inversion to
only two iterations per frequency. Too many iterations would over-fit the reflectivity,
thus emphasizing the short wavelength component without improving the longer

wavelength velocity field.
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The results of the phase and amplitude inversion for line 5300 are shown in
Figures 6 and 7. The results for line 1400 are displayed in Figure 8. The velocities at the
crossing between the two lines are in very good agreement (Figure 8). The next section
will discuss those results in terms of comparison with the migrated section, and the

validity of the acoustic approximation in this specific sedimentary environment.

DISCUSSION

Interpretation of the results and comparison with the migrated section

LINE 5300:

Figure 6 shows the result of our inversion for line 5300 derived using 9
frequencies and a total of 18 iterations. Several significant features are now derived that
did not exist in the initial, smooth velocity model from traveltime tomography. First, a
velocity contrast appears around 2 km depth. On the migrated section (Figure 6), it
clearly corresponds to the Bottom Simulating Reflector (BSR) visible at the same depth
between 5 km and 8 km. A BSR marks the thermal stability limit of gas hydrates, which
can trap some free gas underneath. As a result, a velocity inversion is expected to follow
the seafloor shape, as hydrates have the effect of increasing velocity (Leblanc et al.,
2007) whereas gas lowers it. This is exactly what happens between 5 km and 8 km of line
5300 where the velocity drops almost by 200 m/s. Of particular interest is that this low
velocity layer continues eastward where the depth image does not show a clear BSR. The

contrast between those two velocity zones gradually decreases towards the east (compare
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velocity profiles A,B,C in Figure 6), but it is still detected by the waveform tomography
image.

Deeper information can also be extracted from this new velocity field. The gently
dipping reflector around 2.4 km depth acts as the ~2000 m/s limit and the sediments
below it have a much faster velocity than in the migration velocity field. This is the depth
where the refracted rays turn. In the western half of the profile, this dipping reflector has
a strong amplitude. In the waveform tomography image, it corresponds to a low velocity
zone above it (see velocity profile B, LVZ on Figure 6). The 2.9-km-deep discontinuous
reflector is imaged as a low velocity boundary, except towards its eastern extremity
where it is imaged as a high velocity (velocity profile C on Figure 6). In general, lower
velocities are present to the west of the profile and shallower, higher velocities emerge to
the east.

On the shot gathers (Figure 7), this lateral evolution is visible with a clear, long
refraction event for the western shot gathers (corresponding to profile A) and a later
refraction event, with slightly higher velocity (deeper, more compacted high velocity
sediments?) for the eastern shot gathers (corresponding to profiles B and C). Lower
refraction amplitudes on shot gather B correspond to the low velocity region (Figure 6)
just above the 2.4 km deep, high amplitude reflector. The general trend of the cross-over
between reflection and refraction phases also varies laterally and is quite closely matched
by the inversion. Contrary to traveltime tomography, waveform tomography is able to use
refraction waves even when they are not the first arrival. The extent of the available
refraction information can be seen in the starting velocity forward model (Green wiggles

in Figure 5).
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LINE 1400:

Figure 8 shows the result of the same inversion strategy for the crossing profile
1400. Fewer shots are available but the crossing point with line 5300 is well imaged and
the velocity at that position can be compared on both profiles. The two profiles show
nearly identical velocity variations. The high and low velocity contrast corresponding to
the gas hydrates stability limit is also present toward the landward part of the profile with
the low velocity layer gradually diminishing seaward. Some reflectors cross that high
velocity layer between 26 and 35 km, which indicates that this high velocity follows the
seafloor and not the lithology (Figure 8). The 2.3-km-deep reflector is also the ~2000 m/s
isovelocity limit on this profile. Finally, the 2.9-km-deep reflector is also related to a high
velocity at the crossing point, although this same reflector corresponds to a lower
velocity just further north. Some dipping artifacts are visible on this profile because the
depth of the turning waves varies laterally as a consequence of the non flat bathymetry

(Figure 8).

Phase and amplitude inversions and the applicability of acoustic waveform

tomography to long-streamer MCS data.

Using long streamer data means using reflection arrivals near or beyond the
critical angle, with potentially important P-to-S wave conversions at far offsets. The
acoustic code we use does not take into account the energy lost by S-wave conversions
and the use of the amplitude information could be affected. It is thus important to check

that our results are not significantly impacted by this limitation.
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To assess the effect of S-wave conversions in our specific marine sedimentary
environment, we calculate two forward models (Figure 10) of a shot gather in a 1D
velocity model corresponding to profile B (Figure 6). This profile has been chosen
because two velocity inversions are present, which represent the most complex features
in the section. The first forward model is a purely acoustic response, whereas the second
is the acoustic response including P-S conversions (Fuchs and Mueller 1971, Kennett,
1974). While we acknowledge that lateral variations of the velocity field could increase
P-S conversions, in our case, we are very close to a 1D situation. This area of the Scotian
slope is composed of a thick (~ 7km), Triassic to Quaternary, post-rift sedimentary
section. The upper two kilometers, covered by our investigations, are composed of
interbedded horizontal layers of prodeltaic mudstone, claystone and siltstone deposited
since the Miocene as a result of different events such as the late Tertiary sea-level
lowstands (Piper and Normark, 1989; Leblanc et al, 2007). Recent mud depositions from
the last interglacial period (12 ka, Mosher et al., 1994) were cored and show soft, water
saturated seafloor properties (Vp=1530+20 m/s, density=1680+50 Mg/m3; Leblanc et al.,
2007).

These aspects are compatible with the use of high Poisson's ratios (0.49 at the
seafloor to 0.41 at 1km depth, Hamilton, 1979) to determine the S-wave velocity used in
the 1D forward model. The difference between the two forward models (Figure 10) is not
significant and establishes the applicability of the acoustic waveform tomography to this
dataset, corresponding to a smooth S-wave velocity field (Barnes and Charara 2009).
When these conditions are not met, this type of test is very useful to determine what part
of the wavefield cannot be used for phase plus amplitude inversion. In general, first

refraction arrivals have a small incident angle and thus can often be used if there are no
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strong lateral variations of attenuation, which is a potential problem with OBS datasets
(Bleibinhaus et al., 2007,2009), since long profiles may cross very different geological
terrains.

Figure 9 shows the phase only inversion of Line 5300, with all other parameters
unchanged. Comparison with the phase plus amplitude inversion shows a large
improvement of the result relative to phase only, which is a another validation of the
acoustic approximation in our specific case. We are confident that unmodeled parameters
(small lateral variations, higher S-wave velocity contrasts at the BSR) do not significantly
impact the validity of the acoustic approximation. Comparing the forward modeled
wavefields in the “phase” and “phase plus amplitude” waveform inverted velocities
(Figure 7) shows a much better fit of the refraction event when using the amplitude
information. This improvement of the modeled wavefield corresponds to a clear
improvement of the velocity contrast below the hydrate layer (see difference field in

Figure 9) and a much more detailed image in general.

CONCLUSIONS

Waveform tomography applied to MCS data is a promising imaging method when
used in a suitable environment. The relatively high starting frequency (~8 Hz) and the
limited weight of the refractions in the dataset require a good starting velocity model for
a successful inversion. A more complex environment, with all other parameters
unchanged, could potentially limit the ability to determine a successful starting velocity
model. Longer refracted wavepaths through the target structures would overcome this

problem and depending on the velocity structure itself, the refracted waves would then
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turn at a greater depth. Using a longer streamer (e.g. 15 km) or modeling structures in
shallower water depths could help to extend the depth of the inversion, although in the
second case the multiple reflections would interfere. Joint inversion of MCS and OBS
data would then be the most robust solution to obtain a refraction-based high-resolution
velocity model at all depths imaged by the MCS reflection method. OBS data, through
the use of lower frequencies and more robust traveltime inversions, could also cover the
low wavenumbers we might miss by using high starting frequencies of the MCS data,
even above the depth of the turning waves.

In the meantime, the use of MCS waveform tomography appears to be adapted
best to studies of shallow sediment such as the characterization of gas hydrate structures.
The high resolution background velocity field helps to interpret a low amplitude reflector
as the continuation of a strong and well defined BSR. For deeper reflectors, it associates
the main sedimentary units to characteristic velocities and detects velocity inversions

down to the depth limit of the turning waves (Figure 6).
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Aliasing number Na=2Dgamp*f/Vmin (Where Dsamp is the source or receiver interval and

Vmin  the minimum velocity in the model) in a selection of studies involving different

real and synthetic datasets. An aliasing number higher than 1 theoretically produces some

aliasing. In practice, inversion results can be satisfying with sparser sampling (Brender

and Pratt, 2007b).
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Operto et al. (2006)

Sirgue and Pratt (2004)
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Brenders and Pratt (2007b)
Bleibinhaus et al. (2009) a8SAF
Bleibinhaus et al. (2009) 4&CBI
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This study L1400

Data
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real

synthetic
real

synthetic
real
real
real

real

Geometry
reflection
refraction
refraction
refraction
refraction
refraction
refraction

MCS
MCS

V.., (m/s)
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2000
1500
2000
4000
2000
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1500
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Dsamp (m)
12.5
1000
100

90

5000

500-1000
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Figure 1: Location of the Novaspan 2D lines acquired by GXT in 2003 on the Scotian
slope using a 9-km-long streamer (dashed lines). The crossing red sections of lines 5300
and 1400 are used in this study. White areas represent salt. The seismic profile is a stack
section of Line 5300 where seafloor multiples are visible (M). Turning depth of the

recorded refraction waves is around 3.5s TWTT.

Figure 2: (a) Sketch of the streamer geometry in relation with the fixed receiver array.
The active receivers for shot 116 are indicated in red. (b) Example of the frequency
domain data in a shot-receiver space: the 24 Hz component of the data is displayed and
the red dashed line indicates the 24 Hz component of shot 116 for all 360 traces. For each
shots, non active receivers have a zero component. (c) Shot gather 116 corresponding to
the positions above. Refracted arrivals arriving before the seafloor reflection are indicated

as well as the first multiple of the seafloor (M).

Figure 3: (a) Modeled source wavelet using Gundalf © software. (b) Frequency

spectrums of the field data (red) and of the modeled source wavelet (black).

Figure 4: Starting velocity models for the full waveform tomography. (a) Smoothed
prestack depth migration velocity field for line 5300 and (b) the starting velocity model
obtained after traveltime tomography. Traveltime tomography updates the velocity only
in the highlighted area indicating limited depth penetration as constrained by the 9-km-

long streamer. Positions A, B and C approximately correspond to shot gathers displayed
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in Figure 5.

Figure 5: Shot gathers corresponding to the positions A, B, C in Figure 4. The wavefields
are displayed for every 4™ trace with a 2 km/s reduced velocity. Real data is in black and
the forward model is in green; common areas are in red, even when the phases are wrong.
The modeled refractions arrive too late in the migration velocity case (a). For clarity and
homogeneity with the next figures, we display a 8-25 Hz wavefield, and although the
match with the far offset refraction arrival is not perfect at 25 Hz for shots A and B, the
model clearly fits the data within half a cycle at 8 Hz after traveltime tomography (b).
The seafloor reflection very weak in the models because the velocities are smooth, which

makes the part of the refraction event arriving after the seafloor more visible.

Figure 6: Waveform tomography velocity model for GXT line 5300 (top) using 9
frequencies (range 8-24 Hz with 2 Hz step). The prestack depth migrated reflection image
(bottom) is diplayed for comparison. The BSR reflector is visible at 2 km depth between
distances of 5-8 km. Red curves show velocity versus depth at three specific locations
(A,B,C). These locations correspond to the shot gathers on Figure 7. Position C is the
crossing point with profile 1400 (see Figure 9). Shaded areas are not covered by the
refracted rays recorded on the 9 km-long streamer. Notice the visible polygonal fault in
the waveform velocity model. G. H. indicates the gas hydrates layer (high velocity)
below which low velocity free gas is trapped. The high amplitudes at 2.4 km depth on the
prestack depth migration profile correspond to the low velocity zone (LVZ) above the

reflector in the velocity model.
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Figure 7: Observed (black) and modeled (green) shot gathers (fnax=25 Hz). The refracted
waves on these shot gathers turn approximately at positions A, B and C of Figure 6.
Areas where the model and the data agree are shown in red. The wavefields are displayed
with a 2 km/s reduced velocity. Shaded receivers for nearest offsets (0-4 km) are not used
in the inversion. Only every 4™ trace is displayed. Shot gathers on the left (a) are modeled
in the phase only waveform velocity model (Figure 9a) and shot gathers on the right (b)
are modeled in the phase plus amplitude waveform velocity model (Figure 6 and 9b).
Notice how even the phase of the refracted arrivals at far offset are improved by the

addition of the amplitudes in the inversion (shots A and B).

Figure 8: (a) Waveform tomography velocity model for GXT line 1400 using 9
frequencies (range 8-24 Hz with 2 Hz step) superimposed on the prestack depth migrated
reflection image. Shaded areas are not covered by the refracted rays recorded on the 9
km-long streamer. Dipping artifacts are visible between 25 and 35 km just above the
shaded area limit (stars, see text). (b) Velocity at the crossing point C with line 5300
(Figure 6). The NMO (blue), migration (green), traveltime tomography (orange) and
waveform tomography velocities for lines 1400 (black) and 5300 (red) are displayed.

Note the excellent agreement between the waveform models.

Figure 9: Velocity models after phase only inversion (a) and phase plus amplitude
inversion (b). Prestack depth migration profiles are superimposed. The difference field
(c) between the two results of the inversions emphasizes how crucial the amplitude
information is to retrieve the velocity inversion at the weak BSR. Positions A, B and C

approximately correspond to shot gathers displayed on Figure 7.
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Figure 10: Acoustic synthetic shot gather (gray) forward modeled in a 1D velocity model
corresponding to profile B in Figure 6. The red wiggles are the difference field between
the purely acoustic case and the acoustic part of the full seismic case including S wave
conversion at the horizontal layer interfaces. The part of the wavefield where the
difference is noticeable, but not significant, is contoured. The critical angle for the
seafloor is 74 degrees using velocities and densities derived from cores, corresponding to

an offset of 11 km.
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Proposal to ION GX Technology
Dr. Keith Louden and Dr. Mladen Nedimovic,
Dalhousie University

Proposal title: Joint analysis of the NovaSpan Line 2000 MCS and
OETR Line OBS data using traveltime and waveform tomography

Summary:

We seek to further develop our relationship with ION GX Technology, which started
in 2006, by proposing to jointly analyze NovaSpan MCS Line 2000 and OETR OBS
line data using traveltime and full waveform tomography. For this, we request that
ION GX Technology provide us with the NovaSpan Line 2000 navigation and raw
shot gathers in SEGY format. We have the necessary funding needed for data
analysis through our other research grants. If possible, we would also appreciate
receiving the new prestack depth migrated images of the NovaSpan 2003 lines.

Completed work:

Detailed velocity models of the earth subsurface can be obtained through waveform
tomography. The accuracy of the long-wavelength component of such velocity
models, which is the background velocity field, is particularly sensitive to modeling
low-frequency refracted waves that have long paths through target structures. Thus
field examples primarily have focused on the analysis of long-offset wide-angle
datasets collected using autonomous receivers, in which refractions arrive at
significantly earlier times than reflections. Modern marine acquisition with long
streamers now offers the ability to record, both in shallow and deep water, such far
offset refracted waves with high spatial density and uniform source. During the past
two years, we focused our exploratory waveform tomography work on two small
crossing sections of Nova Span lines 5300 and 1400. These 2D MCS data were
acquired with a 9-km-long streamer over the Scotian Slope in water depths of
~1600 m. The refracted arrivals, although mostly restricted to far offset receivers,
provide sufficient information to successfully invert for a high-resolution
background velocity field. Using a frequency domain acoustic code over frequencies
from 8-24 Hz on the two crossing profiles (45 and 30 km long), we detail how the
limited refracted waves can constrain the velocity field above the depth of the
turning waves (~1.5 km below seafloor). Several important features are resolved by
the waveform velocity model that are not present in the initial travel-time model. In
particular, at shallow depth a high velocity layer due to gas hydrates is imaged even
where a characteristic BSR is not visible. At greater depth, a strong velocity increase
of 300 km/s exists beneath a gently dipping reflector along which low-velocity
zones, possibly related to gas, are present. Velocity models are highly consistent at
the crossing point between the two profiles. After review by ION GXT, we submitted
a manuscript on this work to Geophysics.
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Proposed work:

A dense wide-angle refraction profile using 100 ocean bottom seismometers (OBS)
was collected in Fall 2009 for OETR Association at a location coincident with the
ION GXT Line 2000. We have the collected data in our lab. These data, combined
with the ION GXT Line 2000 data, open up new opportunities with respect to the
quality and resolution of the velocity profiles that can be produced. The large
number of OBSs on the OETR line have densely sampled the deep structures
providing excellent velocity constraints on the deep sediments, crystalline crust and
uppermost mantle, but do not constrain well the velocities of the uppermost
sediments. In order to produce a highly detailed and accurate velocity image at all
depths, velocities in the uppermost few km of sediments must first be constrained
by applying waveform tomography to the ION GXT Line 2000 data. This result can
then be combined with the traveltime tomography model formed using the wide
angle data to form the starting velocity model for the full waveform tomography of
the dense OBS data. We believe that through this process we can form the first
highly detailed velocity images of a passive margin setting, where the detailed
velocity profile would extend to approximately the same depth as does the prestack
depth reflection image. We expect the newly formed detailed velocity images to
provide significant new insight into the rifting processes at the north-central Scotian
margin.

Costs:

We would be pleased to cover all the costs incurred by ION GXT in preparing and
sending us the requested data. Please let us know if there is any additional
information we can provide.
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